
CHAPTER14

Microstrip Antennas

14.1 INTRODUCTION

In high-performance aircraft, spacecraft, satellite, and missile applications, where size,
weight, cost, performance, ease of installation, and aerodynamic profile are constraints,
low-profile antennas may be required. Presently there are many other government and
commercial applications, such as mobile radio and wireless communications, that have
similar specifications. To meet these requirements, microstrip antennas [1]–[38] can
be used. These antennas are low profile, conformable to planar and nonplanar sur-
faces, simple and inexpensive to manufacture using modern printed-circuit technology,
mechanically robust when mounted on rigid surfaces, compatible with MMIC designs,
and when the particular patch shape and mode are selected, they are very versa-
tile in terms of resonant frequency, polarization, pattern, and impedance. In addition,
by adding loads between the patch and the ground plane, such as pins and varactor
diodes, adaptive elements with variable resonant frequency, impedance, polarization,
and pattern can be designed [18], [39]–[44].

Major operational disadvantages of microstrip antennas are their low efficiency,
low power, high Q (sometimes in excess of 100), poor polarization purity, poor scan
performance, spurious feed radiation and very narrow frequency bandwidth, which is
typically only a fraction of a percent or at most a few percent. In some applications,
such as in government security systems, narrow bandwidths are desirable. However,
there are methods, such as increasing the height of the substrate, that can be used to
extend the efficiency (to as large as 90 percent if surface waves are not included) and
bandwidth (up to about 35 percent) [38]. However, as the height increases, surface
waves are introduced which usually are not desirable because they extract power from
the total available for direct radiation (space waves). The surface waves travel within
the substrate and they are scattered at bends and surface discontinuities, such as the
truncation of the dielectric and ground plane [45]–[49], and degrade the antenna pattern
and polarization characteristics. Surface waves can be eliminated, while maintaining
large bandwidths, by using cavities [50], [51]. Stacking, as well as other methods, of
microstrip elements can also be used to increase the bandwidth [13], [52]–[62]. In
addition, microstrip antennas also exhibit large electromagnetic signatures at certain
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812 MICROSTRIP ANTENNAS

frequencies outside the operating band, are rather large physically at VHF and possibly
UHF frequencies, and in large arrays there is a trade-off between bandwidth and scan
volume [63]–[65].

14.1.1 Basic Characteristics

Microstrip antennas received considerable attention starting in the 1970s, although
the idea of a microstrip antenna can be traced to 1953 [1] and a patent in 1955 [2].
Microstrip antennas, as shown in Figure 14.1(a), consist of a very thin (t � λ0, where
λ0 is the free-space wavelength) metallic strip (patch) placed a small fraction of a wave-
length (h� λ0, usually 0.003λ0 ≤ h ≤ 0.05λ0) above a ground plane. The microstrip
patch is designed so its pattern maximum is normal to the patch (broadside radiator).
This is accomplished by properly choosing the mode (field configuration) of excitation
beneath the patch. End-fire radiation can also be accomplished by judicious mode selec-
tion. For a rectangular patch, the length L of the element is usually λ0/3 < L < λ0/2.
The strip (patch) and the ground plane are separated by a dielectric sheet (referred to
as the substrate), as shown in Figure 14.1(a).

There are numerous substrates that can be used for the design of microstrip antennas,
and their dielectric constants are usually in the range of 2.2 ≤ εr ≤ 12. The ones that
are most desirable for good antenna performance are thick substrates whose dielectric
constant is in the lower end of the range because they provide better efficiency, larger
bandwidth, loosely bound fields for radiation into space, but at the expense of larger
element size [38]. Thin substrates with higher dielectric constants are desirable for
microwave circuitry because they require tightly bound fields to minimize undesired
radiation and coupling, and lead to smaller element sizes; however, because of their
greater losses, they are less efficient and have relatively smaller bandwidths [38]. Since
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Figure 14.2 Representative shapes of microstrip patch elements.

microstrip antennas are often integrated with other microwave circuitry, a compromise
has to be reached between good antenna performance and circuit design.

Often microstrip antennas are also referred to as patch antennas. The radiating
elements and the feed lines are usually photoetched on the dielectric substrate. The
radiating patch may be square, rectangular, thin strip (dipole), circular, elliptical, tri-
angular, or any other configuration. These and others are illustrated in Figure 14.2.
Square, rectangular, dipole (strip), and circular are the most common because of ease
of analysis and fabrication, and their attractive radiation characteristics, especially low
cross-polarization radiation. Microstrip dipoles are attractive because they inherently
possess a large bandwidth and occupy less space, which makes them attractive for
arrays [14], [22], [30], [31]. Linear and circular polarizations can be achieved with
either single elements or arrays of microstrip antennas. Arrays of microstrip elements,
with single or multiple feeds, may also be used to introduce scanning capabilities and
achieve greater directivities. These will be discussed in later sections.

14.1.2 Feeding Methods

There are many configurations that can be used to feed microstrip antennas. The four
most popular are the microstrip line, coaxial probe, aperture coupling, and proximity
coupling [15], [16], [30], [35], [38], [66]–[68]. These are displayed in Figure 14.3. One
set of equivalent circuits for each one of these is shown in Figure 14.4. The microstrip
feed line is also a conducting strip, usually of much smaller width compared to the
patch. The microstrip-line feed is easy to fabricate, simple to match by controlling the
inset position and rather simple to model. However as the substrate thickness increases,
surface waves and spurious feed radiation increase, which for practical designs limit
the bandwidth (typically 2–5%).

Coaxial-line feeds, where the inner conductor of the coax is attached to the radiation
patch while the outer conductor is connected to the ground plane, are also widely used.
The coaxial probe feed is also easy to fabricate and match, and it has low spurious
radiation. However, it also has narrow bandwidth and it is more difficult to model,
especially for thick substrates (h > 0.02λ0).

Both the microstrip feed line and the probe possess inherent asymmetries which gen-
erate higher order modes which produce cross-polarized radiation. To overcome some of
these problems, noncontacting aperture-coupling feeds, as shown in Figures 14.3(c,d),
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have been introduced. The aperture coupling of Figure 14.3(c) is the most difficult of
all four to fabricate and it also has narrow bandwidth. However, it is somewhat easier
to model and has moderate spurious radiation. The aperture coupling consists of two
substrates separated by a ground plane. On the bottom side of the lower substrate there is
a microstrip feed line whose energy is coupled to the patch through a slot on the ground
plane separating the two substrates. This arrangement allows independent optimization
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Figure 14.4 Equivalent circuits for typical feeds of Figure 14.3.

of the feed mechanism and the radiating element. Typically a high dielectric material
is used for the bottom substrate, and thick low dielectric constant material for the top
substrate. The ground plane between the substrates also isolates the feed from the radiat-
ing element and minimizes interference of spurious radiation for pattern formation and
polarization purity. For this design, the substrate electrical parameters, feed line width,
and slot size and position can be used to optimize the design [38]. Typically matching
is performed by controlling the width of the feed line and the length of the slot. The
coupling through the slot can be modeled using the theory of Bethe [69], which is also
used to account for coupling through a small aperture in a conducting plane. This the-
ory has been successfully used to analyze waveguide couplers using coupling through
holes [70]. In this theory the slot is represented by an equivalent normal electric dipole
to account for the normal component (to the slot) of the electric field, and an equivalent
horizontal magnetic dipole to account for the tangential component (to the slot) mag-
netic field. If the slot is centered below the patch, where ideally for the dominant mode
the electric field is zero while the magnetic field is maximum, the magnetic coupling
will dominate. Doing this also leads to good polarization purity and no cross-polarized
radiation in the principal planes [38]. Of the four feeds described here, the proximity
coupling has the largest bandwidth (as high as 13 percent), is somewhat easy to model
and has low spurious radiation. However its fabrication is somewhat more difficult. The
length of the feeding stub and the width-to-line ratio of the patch can be used to control
the match [61].

14.1.3 Methods of Analysis

There are many methods of analysis for microstrip antennas. The most popular mod-
els are the transmission-line [16], [35], cavity [12], [16], [18], [35], and full wave
(which include primarily integral equations/Moment Method) [22], [26], [71]–[74].
The transmission-line model is the easiest of all, it gives good physical insight, but
is less accurate and it is more difficult to model coupling [75]. Compared to the
transmission-line model, the cavity model is more accurate but at the same time more
complex. However, it also gives good physical insight and is rather difficult to model
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coupling, although it has been used successfully [8], [76], [77]. In general when applied
properly, the full-wave models are very accurate, very versatile, and can treat single
elements, finite and infinite arrays, stacked elements, arbitrary shaped elements, and
coupling. However they are the most complex models and usually give less physical
insight. In this chapter we will cover the transmission-line and cavity models only.
However results and design curves from full-wave models will also be included. Since
they are the most popular and practical, in this chapter the only two patch configura-
tions that will be considered are the rectangular and circular. Representative radiation
characteristics of some other configurations will be included.

14.2 RECTANGULAR PATCH

The rectangular patch is by far the most widely used configuration. It is very easy to
analyze using both the transmission-line and cavity models, which are most accurate
for thin substrates [78]. We begin with the transmission-line model because it is easier
to illustrate.

14.2.1 Transmission-Line Model

It was indicated earlier that the transmission-line model is the easiest of all but it
yields the least accurate results and it lacks the versatility. However, it does shed some
physical insight. As it will be demonstrated in Section 14.2.2 using the cavity model, a
rectangular microstrip antenna can be represented as an array of two radiating narrow
apertures (slots), each of width W and height h, separated by a distance L. Basically
the transmission-line model represents the microstrip antenna by two slots, separated
by a low-impedance Zc transmission line of length L.

A. Fringing Effects
Because the dimensions of the patch are finite along the length and width, the fields
at the edges of the patch undergo fringing. This is illustrated along the length in
Figures 14.1(a,b) for the two radiating slots of the microstrip antenna. The same applies
along the width. The amount of fringing is a function of the dimensions of the patch and
the height of the substrate. For the principal E-plane (xy-plane) fringing is a function
of the ratio of the length of the patch L to the height h of the substrate (L/h) and the
dielectric constant εr of the substrate. Since for microstrip antennas L/h� 1, fringing
is reduced; however, it must be taken into account because it influences the resonant
frequency of the antenna. The same applies for the width.

For a microstrip line shown in Figure 14.5(a), typical electric field lines are shown
in Figure 14.5(b). This is a nonhomogeneous line of two dielectrics; typically the
substrate and air. As can be seen, most of the electric field lines reside in the substrate
and parts of some lines exist in air. As W/h� 1 and εr � 1, the electric field lines
concentrate mostly in the substrate. Fringing in this case makes the microstrip line look
wider electrically compared to its physical dimensions. Since some of the waves travel
in the substrate and some in air, an effective dielectric constant εreff is introduced to
account for fringing and the wave propagation in the line.

To introduce the effective dielectric constant, let us assume that the center conductor
of the microstrip line with its original dimensions and height above the ground plane
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Figure 14.5 Microstrip line and its electric field lines, and effective dielectric constant
geometry.

is embedded into one dielectric, as shown in Figure 14.5(c). The effective dielectric
constant is defined as the dielectric constant of the uniform dielectric material so that the
line of Figure 14.5(c) has identical electrical characteristics, particularly propagation
constant, as the actual line of Figure 14.5(a). For a line with air above the substrate,
the effective dielectric constant has values in the range of 1 < εreff < εr . For most
applications where the dielectric constant of the substrate is much greater than unity
(εr � 1), the value of εreff will be closer to the value of the actual dielectric constant
εr of the substrate. The effective dielectric constant is also a function of frequency.
As the frequency of operation increases, most of the electric field lines concentrate in
the substrate. Therefore the microstrip line behaves more like a homogeneous line of
one dielectric (only the substrate), and the effective dielectric constant approaches the
value of the dielectric constant of the substrate. Typical variations, as a function of
frequency, of the effective dielectric constant for a microstrip line with three different
substrates are shown in Figure 14.6.

For low frequencies the effective dielectric constant is essentially constant. At inter-
mediate frequencies its values begin to monotonically increase and eventually approach
the values of the dielectric constant of the substrate. The initial values (at low frequen-
cies) of the effective dielectric constant are referred to as the static values, and they
are given by [79]

W/h > 1

εreff = εr + 1

2
+ εr − 1

2

[
1+ 12

h

W

]−1/2

(14-1)

B. Effective Length, Resonant Frequency, and Effective Width
Because of the fringing effects, electrically the patch of the microstrip antenna looks
greater than its physical dimensions. For the principal E-plane (xy-plane), this is
demonstrated in Figure 14.7 where the dimensions of the patch along its length have
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been extended on each end by a distance 3L, which is a function of the effective
dielectric constant εreff and the width-to-height ratio (W/h). A very popular and practical
approximate relation for the normalized extension of the length is [80]

3L

h
= 0.412

(εreff + 0.3)

(
W

h
+ 0.264

)

(εreff − 0.258)

(
W

h
+ 0.8

) (14-2)
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Since the length of the patch has been extended by 3L on each side, the effective
length of the patch is now (L = λ/2 for dominant TM010 mode with no fringing)

Leff = L+ 23L (14-3)

For the dominant TM010 mode, the resonant frequency of the microstrip antenna is
a function of its length. Usually it is given by

(fr)010 = 1

2L
√
εr
√
µ0ε0

= υ0

2L
√
εr

(14-4)

where υ0 is the speed of light in free space. Since (14-4) does not account for fringing,
it must be modified to include edge effects and should be computed using

(frc)010 = 1

2Leff
√
εreff
√
µ0ε0

= 1

2(L+ 23L)
√
εreff
√
µ0ε0

= q
1

2L
√
εr
√
µ0ε0

= q
υ0

2L
√
εr

(14-5)

where

q = (frc)010

(fr)010
(14-5a)

The q factor is referred to as the fringe factor (length reduction factor). As the substrate
height increases, fringing also increases and leads to larger separations between the
radiating edges and lower resonant frequencies.

C. Design
Based on the simplified formulation that has been described, a design procedure is out-
lined which leads to practical designs of rectangular microstrip antennas. The procedure
assumes that the specified information includes the dielectric constant of the substrate
(εr ), the resonant frequency (fr), and the height of the substrate h. The procedure is
as follows:

Specify:
εr , fr (in Hz), and h

Determine:
W,L

Design procedure:

1. For an efficient radiator, a practical width that leads to good radiation efficiencies
is [15]

W = 1

2fr
√
µ0ε0

√
2

εr + 1
= υ0

2fr

√
2

εr + 1
(14-6)

where υ0 is the free-space velocity of light.
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2. Determine the effective dielectric constant of the microstrip antenna using (14-1).
3. Once W is found using (14-6), determine the extension of the length 3L using

(14-2).
4. The actual length of the patch can now be determined by solving (14-5) for
L, or

L = 1

2fr
√
εreff
√
µ0ε0

− 23L (14-7)

Example 14.1

Design a rectangular microstrip antenna using a substrate (RT/duroid 5880) with dielectric
constant of 2.2, h = 0.1588 cm (0.0625 inches) so as to resonate at 10 GHz.

Solution: Using (14-6), the width W of the patch is

W = 30

2(10)

√
2

2.2+ 1
= 1.186 cm (0.467 in)

The effective dielectric constant of the patch is found using (14-1), or

εreff = 2.2+ 1

2
+ 2.2− 1

2

(
1+ 12

0.1588

1.186

)−1/2

= 1.972

The extended incremental length of the patch 3L is, using (14-2)

3L = 0.1588(0.412)
(1.972+ 0.3)

(
1.186

0.1588
+ 0.264

)

(1.972− 0.258)

(
1.186

0.1588
+ 0.8

)
= 0.081 cm (0.032 in)

The actual length L of the patch is found using (14-3), or

L = λ

2
− 23L = 30

2(10)
√

1.972
− 2(0.081) = 0.906 cm (0.357 in)

Finally the effective length is

Le = L+ 23L = λ

2
= 1.068 cm (0.421 in)

An experimental rectangular patch based on this design was built and tested. It is probe
fed from underneath by a coaxial line and is shown in Figure 14.8(a). Its principal E- and
H -plane patterns are displayed in Figure 14.19(a,b).

D. Conductance
Each radiating slot is represented by a parallel equivalent admittance Y (with conduc-
tance G and susceptance B). This is shown in Figure 14.9. The slots are labeled as
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(a) rectangular (b) circular

Figure 14.8 Experimental models of rectangular and circular patches based, respectively, on
the designs of Examples 14.1 and 14.4.

#1 and #2. The equivalent admittance of slot #1, based on an infinitely wide, uniform
slot, is derived in Example 12.8 of Chapter 12, and it is given by [81]

Y1 = G1 + jB1 (14-8)

where for a slot of finite width W

G1 = W

120λ0

[
1− 1

24
(k0h)

2

]
h

λ0
<

1

10
(14-8a)

B1 = W

120λ0
[1− 0.636 ln(k0h)]

h

λ0
<

1

10
(14-8b)

Since slot #2 is identical to slot #1, its equivalent admittance is

Y2 = Y1, G2 = G1, B2 = B1 (14-9)

The conductance of a single slot can also be obtained by using the field expression
derived by the cavity model. In general, the conductance is defined as

G1 = 2Prad

|V0|2 (14-10)

W

L

(a) Rectangular patch (b) Transmission model equivalent

B2 G2
B1

YC

G1

Figure 14.9 Rectangular microstrip patch and its equivalent circuit transmission-line model.
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Using the electric field of (14-41), the radiated power is written as

Prad = |V0|2
2πη0

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ dθ (14-11)

Therefore the conductance of (14-10) can be expressed as

G1 = I1

120π2
(14-12)

where

I1 =
∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ dθ

= −2+ cos(X)+XSi(X)+ sin(X)

X
(14-12a)

X = k0W (14-12b)

Asymptotic values of (14-12) and (14-12a) are

G1 =




1

90

(
W

λ0

)2

W � λ0

1

120

(
W

λ0

)
W � λ0

(14-13)

The values of (14-13) for W � λ0 are identical to those given by (14-8a) for h� λ0.
A plot of G as a function of W/λ0 is shown in Figure 14.10.

E. Resonant Input Resistance
The total admittance at slot #1 (input admittance) is obtained by transferring the admit-
tance of slot #2 from the output terminals to input terminals using the admittance
transformation equation of transmission lines [16], [70], [79]. Ideally the two slots
should be separated by λ/2 where λ is the wavelength in the dielectric (substrate). How-
ever, because of fringing the length of the patch is electrically longer than the actual
length. Therefore the actual separation of the two slots is slightly less than λ/2. If the
reduction of the length is properly chosen using (14-2) (typically 0.48λ < L < 0.49λ),
the transformed admittance of slot #2 becomes

Ỹ2 = G̃2 + jB̃2 = G1 − jB1 (14-14)

or
G̃2 = G1 (14-14a)

B̃2 = −B1 (14-14b)
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Therefore the total resonant input admittance is real and is given by

Yin = Y1 + Ỹ2 = 2G1 (14-15)

Since the total input admittance is real, the resonant input impedance is also real, or

Zin = 1

Yin
= Rin = 1

2G1
(14-16)

The resonant input resistance, as given by (14-16), does not take into account mutual
effects between the slots. This can be accomplished by modifying (14-16) to [8]

Rin = 1

2(G1 ±G12)
(14-17)

where the plus (+) sign is used for modes with odd (antisymmetric) resonant voltage
distribution beneath the patch and between the slots while the minus (−) sign is used for
modes with even (symmetric) resonant voltage distribution. The mutual conductance
is defined, in terms of the far-zone fields, as

G12 = 1

|V0|2 Re
∫∫
S

E1 ×H∗
2 · ds (14-18)

where E1 is the electric field radiated by slot #1, H2 is the magnetic field radiated by
slot #2, V0 is the voltage across the slot, and the integration is performed over a sphere
of large radius. It can be shown that G12 can be calculated using [8], [34]

G12 = 1

120π2

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

J0(k0L sin θ) sin3 θ dθ (14-18a)
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where J0 is the Bessel function of the first kind of order zero. For typical microstrip
antennas, the mutual conductance obtained using (14-18a) is small compared to the
self conductance G1 of (14-8a) or (14-12).

As shown by (14-8a) and (14-17), the input resistance is not strongly dependent
upon the substrate height h. In fact for very small values of h, such that k0h� 1,
the input resistance is not dependent on h. Modal-expansion analysis also reveals
that the input resistance is not strongly influenced by the substrate height h. It is
apparent from (14-8a) and (14-17) that the resonant input resistance can be decreased
by increasing the width W of the patch. This is acceptable as long as the ratio of W/L
does not exceed 2 because the aperture efficiency of a single patch begins to drop, as
W/L increases beyond 2.

The resonant input resistance, as calculated by (14-17), is referenced at slot #1.
However, it has been shown that the resonant input resistance can be changed by using
an inset feed, recessed a distance y0 from slot #1, as shown in Figure 14.11(a). This
technique can be used effectively to match the patch antenna using a microstrip-line

W

L

(a) Recessed microstrip-line feed

y0

W0
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yo/L

(b) Normalized input resistance

R
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(y
 =

 y
o)

/R
in

(y
 =

 0
)

Figure 14.11 Recessed microstrip-line feed and variation of normalized input resistance.
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feed whose characteristic impedance is given by [79]

Zc =




60√
εreff

ln

[
8h

W0
+ W0

4h

]
,

120π

√
εreff

[
W0

h
+ 1.393+ 0.667 ln

(
W0

h
+ 1.444

)] ,
W0

h
≤ 1

W0

h
> 1

(14-19a)

(14-19a)

where W0 is the width of the microstrip line, as shown in Figure 14.11. Using modal-
expansion analysis, the input resistance for the inset feed is given approximately
by [8], [16]

Rin(y = y0) = 1

2(G1 ±G12)

[
cos2

(π
L
y0

)

+ G2
1 + B2

1

Y 2
c

sin2
(π
L
y0

)
− B1

Yc
sin

(
2π

L
y0

)]
(14-20)

where Yc = 1/Zc. Since for most typical microstrips G1/Yc � 1 and B1/Yc � 1,
(14-20) reduces to

Rin(y = y0) = 1

2(G1 ±G12)
cos2

(π
L
y0

)
= Rin(y = 0) cos2

(π
L
y0

)
(14-20a)

A plot of the normalized value of (14-20a) is shown in Figure 14.11(b).
The values obtained using (14-20) agree fairly well with experimental data. How-

ever, the inset feed introduces a physical notch, which in turn introduces a junction
capacitance. The physical notch and its corresponding junction capacitance influence
slightly the resonance frequency, which typically may vary by about 1%. It is appar-
ent from (14-20a) and Figure 14.11(b) that the maximum value occurs at the edge of
the slot (y0 = 0) where the voltage is maximum and the current is minimum; typical
values are in the 150–300 ohms. The minimum value (zero) occurs at the center of
the patch (y0 = L/2) where the voltage is zero and the current is maximum. As the
inset feed point moves from the edge toward the center of the patch the resonant input
impedance decreases monotonically and reaches zero at the center. When the value of
the inset feed point approaches the center of the patch (y0 = L/2), the cos2(πy0/L)

function varies very rapidly; therefore the input resistance also changes rapidly with
the position of the feed point. To maintain very accurate values, a close tolerance must
be preserved.

Example 14.2

A microstrip antenna with overall dimensions of L = 0.906 cm (0.357 inches) and W =
1.186 cm (0.467 inches), substrate with height h = 0.1588 cm (0.0625 inches) and dielectric
constant of εr = 2.2, is operating at 10 GHz. Find:
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a. The input impedance.
b. The position of the inset feed point where the input impedance is 50 ohms.

Solution:

λ0 = 30

10
= 3 cm

Using (14-12) and (14-12a)
G1 = 0.00157 siemens

which compares with G1 = 0.00328 using (14-8a). Using (14-18a)

G12 = 6.1683× 10−4

Using (14-17) with the (+) sign because of the odd field distribution between the radiating
slots for the dominant TM010 mode

Rin = 228.3508 ohms.

Since the input impedance at the leading radiating edge of the patch is 228.3508 ohms while
the desired impedance is 50 ohms, the inset feed point distance y0 is obtained using (14-20a).
Thus

50 = 228.3508 cos2
(π
L
y0

)
or

y0 = 0.3126 cm (0.123 inches)

14.2.2 Cavity Model

Microstrip antennas resemble dielectric-loaded cavities, and they exhibit higher order
resonances. The normalized fields within the dielectric substrate (between the patch
and the ground plane) can be found more accurately by treating that region as a cav-
ity bounded by electric conductors (above and below it) and by magnetic walls (to
simulate an open circuit) along the perimeter of the patch. This is an approximate
model, which in principle leads to a reactive input impedance (of zero or infinite
value of resonance), and it does not radiate any power. However, assuming that the
actual fields are approximate to those generated by such a model, the computed pat-
tern, input admittance, and resonant frequencies compare well with measurements [12],
[16], [18]. This is an accepted approach, and it is similar to the perturbation meth-
ods which have been very successful in the analysis of waveguides, cavities, and
radiators [81].

To shed some insight into the cavity model, let us attempt to present a physical inter-
pretation into the formation of the fields within the cavity and radiation through its
side walls. When the microstrip patch is energized, a charge distribution is established
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Figure 14.12 Charge distribution and current density creation on microstrip patch.

on the upper and lower surfaces of the patch, as well as on the surface of the ground
plane, as shown in Figure 14.12. The charge distribution is controlled by two mech-
anisms; an attractive and a repulsive mechanism [34]. The attractive mechanism is
between the corresponding opposite charges on the bottom side of the patch and the
ground plane, which tends to maintain the charge concentration on the bottom of the
patch. The repulsive mechanism is between like charges on the bottom surface of the
patch, which tends to push some charges from the bottom of the patch, around its
edges, to its top surface. The movement of these charges creates corresponding current
densities Jb and Jt , at the bottom and top surfaces of the patch, respectively, as shown
in Figure 14.12. Since for most practical microstrips the height-to-width ratio is very
small, the attractive mechanism dominates and most of the charge concentration and
current flow remain underneath the patch. A small amount of current flows around
the edges of the patch to its top surface. However, this current flow decreases as the
height-to-width ratio decreases. In the limit, the current flow to the top would be zero,
which ideally would not create any tangential magnetic field components to the edges
of the patch. This would allow the four side walls to be modeled as perfect magnetic
conducting surfaces which ideally would not disturb the magnetic field and, in turn,
the electric field distributions beneath the patch. Since in practice there is a finite
height-to-width ratio, although small, the tangential magnetic fields at the edges would
not be exactly zero. However, since they will be small, a good approximation to the
cavity model is to treat the side walls as perfectly magnetic conducting. This model
produces good normalized electric and magnetic field distributions (modes) beneath
the patch.

If the microstrip antenna were treated only as a cavity, it would not be sufficient
to find the absolute amplitudes of the electric and magnetic fields. In fact by treat-
ing the walls of the cavity, as well as the material within it as lossless, the cavity
would not radiate and its input impedance would be purely reactive. Also the func-
tion representing the impedance would only have real poles. To account for radiation,
a loss mechanism has to be introduced. In Figures 2.27 and 2.28 of Chapter 2, this
was taken into account by the radiation resistance Rr and loss resistance RL. These
two resistances allow the input impedance to be complex and for its function to have
complex poles; the imaginary poles representing, through Rr and RL, the radiation
and conduction-dielectric losses. To make the microstrip lossy using the cavity model,
which would then represent an antenna, the loss is taken into account by introducing
an effective loss tangent δeff. The effective loss tangent is chosen appropriately to rep-
resent the loss mechanism of the cavity, which now behaves as an antenna and is taken
as the reciprocal of the antenna quality factor Q (δeff = 1/Q).
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Because the thickness of the microstrip is usually very small, the waves generated
within the dielectric substrate (between the patch and the ground plane) undergo con-
siderable reflections when they arrive at the edge of the patch. Therefore only a small
fraction of the incident energy is radiated; thus the antenna is considered to be very
inefficient. The fields beneath the patch form standing waves that can be represented
by cosinusoidal wave functions. Since the height of the substrate is very small (h� λ

where λ is the wavelength within the dielectric), the field variations along the height
will be considered constant. In addition, because of the very small substrate height,
the fringing of the fields along the edges of the patch are also very small whereby the
electric field is nearly normal to the surface of the patch. Therefore only TMx field
configurations will be considered within the cavity. While the top and bottom walls
of the cavity are perfectly electric conducting, the four side walls will be modeled
as perfectly conducting magnetic walls (tangential magnetic fields vanish along those
four walls).

A. Field Configurations (modes)—TMx

The field configurations within the cavity can be found using the vector potential
approach described in detail in Chapter 8 of [79]. Referring to Figure 14.13, the volume
beneath the patch can be treated as a rectangular cavity loaded with a dielectric material
with dielectric constant εr . The dielectric material of the substrate is assumed to be
truncated and not extended beyond the edges of the patch. The vector potential Ax

must satisfy the homogeneous wave equation of

∇2Ax + k2Ax = 0 (14-21)

whose solution is written in general, using the separation of variables, as [79]

Ax = [A1 cos(kxx)+ B1 sin(kxx)][A2 cos(kyy)+ B2 sin(kyy)]

· [A3 cos(kzz)+ B3 sin(kzz)] (14-22)

L

h

x

z

y

W

εr

Figure 14.13 Rectangular microstrip patch geometry.
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where kx, ky and kz are the wavenumbers along the x, y, and z directions, respectively.
These will be determined subject to the boundary conditions. The electric and magnetic
fields within the cavity are related to the vector potential Ax by [79]

Ex = −j 1

ωµε

(
∂2

∂x2
+ k2

)
Ax Hx = 0

Ey = −j 1

ωµε

∂2Ax

∂x∂y
Hy = 1

µ

∂Ax

∂z

Ez = −j 1

ωµε

∂2Ax

∂x∂z
Hz = − 1

µ

∂Ax

∂y

(14-23)

subject to the boundary conditions of

Ey(x
′ = 0, 0 ≤ y ′ ≤ L, 0 ≤ z′ ≤ W)

= Ey(x
′ = h, 0 ≤ y ′ ≤ L, 0 ≤ z′ ≤ W) = 0

Hy(0 ≤ x ′ ≤ h, 0 ≤ y ′ ≤ L, z′ = 0) (14-24)

= Hy(0 ≤ x ′ ≤ h, 0 ≤ y ′ ≤ L, z′ = W) = 0

Hz(0 ≤ x ′ ≤ h, y ′ = 0, 0 ≤ z′ ≤ W)

= Hz(0 ≤ x ′ ≤ h, y ′ = L, 0 ≤ z′ ≤ W) = 0

The primed coordinates x ′, y ′, z′ are used to represent the fields within the cavity.
Applying the boundary conditions Ey(x

′ = 0, 0 ≤ y ′ ≤ L, 0 ≤ z′ ≤ W) = 0 and
Ey(x

′ = h, 0 ≤ y ′ ≤ L, 0 ≤ z′ ≤ W) = 0, it can be shown that B1 = 0 and

kx = mπ

h
, m = 0, 1, 2, . . . (14-25)

Similarly, applying the boundary conditions Hy(0 ≤ x ′ ≤ h, 0 ≤ y ′ ≤ L, z′ = 0) = 0
and Hy(0 ≤ x ′ ≤ h, 0 ≤ y ′ ≤ L, z′ = W) = 0, it can be shown that B3 = 0 and

kz = pπ

W
, p = 0, 1, 2, . . . (14-26)

Finally, applying the boundary conditions Hz(0 ≤ x ′ ≤ h, y ′ = 0, 0 ≤ z′ ≤ W) = 0 and
Hz(0 ≤ x ′ ≤ h, y ′ = L, 0 ≤ z′ ≤ W) = 0, it can be shown that B2 = 0 and

ky = nπ

L
, n = 0, 1, 2, . . . . (14-27)

Thus the final form for the vector potential Ax within the cavity is

Ax = Amnp cos(kxx
′) cos(kyy

′) cos(kzz
′) (14-28)



830 MICROSTRIP ANTENNAS

where Amnp represents the amplitude coefficients of each mnp mode. The wavenumbers
kx, ky, kz are equal to

kx =
(mπ
h

)
, m = 0, 1, 2, . . .

ky =
(nπ
L

)
, n = 0, 1, 2, . . .

kz =
(pπ
W

)
, p = 0, 1, 2, . . .



m = n = p �= 0 (14-29)

where m, n, p represent, respectively, the number of half-cycle field variations along
the x, y, z directions.

Since the wavenumbers kx, ky , and kz are subject to the constraint equation

k2
x + k2

y + k2
z =

(mπ
h

)2 +
(nπ
L

)2 +
(pπ
W

)2 = k2
r = ω2

r µε (14-30)

the resonant frequencies for the cavity are given by

(fr)mnp = 1

2π
√
µε

√(mπ
h

)2 +
(nπ
L

)2 +
(pπ
W

)2
(14-31)

Substituting (14-28) into (14-23), the electric and magnetic fields within the cavity
are written as

Ex = −j (k
2 − k2

x)

ωµε
Amnp cos(kxx

′) cos(kyy
′) cos(kzz

′)

Ey = −j kxky
ωµε

Amnp sin(kxx
′) sin(kyy

′) cos(kzz
′)

Ez = −j kxkz
ωµε

Amnp sin(kxx
′) cos(kyy

′) sin(kzz
′) (14-32)

Hx = 0

Hy = −kz
µ
Amnp cos(kxx

′) cos(kyy
′) sin(kzz

′)

Hz = ky

µ
Amnp cos(kxx

′) sin(kyy
′) cos(kzz

′)

To determine the dominant mode with the lowest resonance, we need to examine the
resonant frequencies. The mode with the lowest order resonant frequency is referred to
as the dominant mode. Placing the resonant frequencies in ascending order determines
the order of the modes of operation. For all microstrip antennas h� L and h� W .
If L > W > h, the mode with the lowest frequency (dominant mode) is the TMx

010
whose resonant frequency is given by

(fr)010 = 1

2L
√
µε

= υ0

2L
√
εr

(14-33)
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where υ0 is the speed of light in free-space. If in addition L > W > L/2 > h, the next
higher order (second) mode is the TMx

001 whose resonant frequency is given by

(fr)001 = 1

2W
√
µε

= υ0

2W
√
εr

(14-34)

If, however, L > L/2 > W > h, the second order mode is the TMx
020, instead of the

TMx
001, whose resonant frequency is given by

(fr)020 = 1

L
√
µε

= υ0

L
√
εr

(14-35)

If W > L > h, the dominant mode is the TMx
001 whose resonant frequency is given

by (14-34) while if W > W/2 > L > h the second order mode is the TMx
002. Based

upon (14-32), the distribution of the tangential electric field along the side walls of
the cavity for the TMx

010, TMx
001, TMx

020 and TMx
002 is as shown, respectively, in

Figure 14.14.
In all of the preceding discussion, it was assumed that there is no fringing of

the fields along the edges of the cavity. This is not totally valid, but it is a good
assumption. However, fringing effects and their influence were discussed previously,
and they should be taken into account in determining the resonant frequency. This was
done in (14-5) for the dominant TMx

010 mode.

L

h

W

L

h

W

L

h

W

L

h

W

TMx
010

(a) TMx
010

TMx
001

(b) TM x
001

TMx
020

(c) TM x
020

TMx
002

(d) TM x
002

Figure 14.14 Field configurations (modes) for rectangular microstrip patch.
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B. Equivalent Current Densities
It has been shown using the cavity model that the microstrip antenna can be modeled
reasonably well by a dielectric-loaded cavity with two perfectly conducting electric
walls (top and bottom), and four perfectly conducting magnetic walls (sidewalls). It
is assumed that the material of the substrate is truncated and does not extend beyond
the edges of the patch. The four sidewalls represent four narrow apertures (slots)
through which radiation takes place. Using the Field Equivalence Principle (Huygens’
Principle) of Section 12.2 of Chapter 12, the microstrip patch is represented by an
equivalent electric current density Jt at the top surface of the patch to account for the
presence of the patch (there is also a current density Jb at the bottom of the patch which
is not needed for this model). The four side slots are represented by the equivalent
electric current density Js and equivalent magnetic current density Ms , as shown in
Figure 14.15(a), each represented by

Js = n̂ × Ha (14-36)

and
Ms = −n̂ × Ea (14-37)

where Ea and Ha represent, respectively, the electric and magnetic fields at the slots.
Because it was shown for microstrip antennas with very small height-to-width ratio

that the current density Jt at the top of the patch is much smaller than the current

W

Jt

Js, Ms

(a) Js, Ms with ground plane

L

W

Jt ≅ 0

Js = 0, Ms

(b) Js = 0, Ms with ground plane

L

W

Ms = –2n Ea

(c) Ms with no ground plane

^

J s
, M

s

J s 
= 

0,
 M

s

LM s 
= 

–2
n

E a

^

Figure 14.15 Equivalent current densities on four sides of rectangular microstrip patch.
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density Jb at the bottom of the patch, it will be assumed it is negligible here and it
will be set to zero. Also it was argued that the tangential magnetic fields along the
edges of the patch are very small, ideally zero. Therefore the corresponding equivalent
electric current density Js will be very small (ideally zero), and it will be set to zero
here. Thus the only nonzero current density is the equivalent magnetic current density
Ms of (14-37) along the side periphery of the cavity radiating in the presence of the
ground plane, as shown in Figure 14.15(b). The presence of the ground plane can
be taken into account by image theory which will double the equivalent magnetic
current density of (14-37). Therefore the final equivalent is a magnetic current density
of twice (14-37) or

Ms = −2n̂ × Ea (14-38)

around the side periphery of the patch radiating into free-space, as shown in
Figure 14.15(c).

It was shown, using the transmission-line model, that the microstrip antenna can be
represented by two radiating slots along the length of the patch (each of width W and
height h). Similarly it will be shown here also that while there are a total of four slots
representing the microstrip antenna, only two (the radiating slots) account for most of
the radiation; the fields radiated by the other two, which are separated by the width W
of the patch, cancel along the principal planes. Therefore the same two slots, separated
by the length of the patch, are referred to here also as radiating slots. The slots are
separated by a very low-impedance parallel-plate transmission line of length L, which
acts as a transformer. The length of the transmission line is approximately λ/2, where λ
is the guide wavelength in the substrate, in order for the fields at the aperture of the two
slots to have opposite polarization. This is illustrated in Figures 14.1(a) and 14.14(a).
The two slots form a two-element array with a spacing of λ/2 between the elements. It
will be shown here that in a direction perpendicular to the ground plane the components
of the field add in phase and give a maximum radiation normal to the patch; thus it is
a broadside antenna.

Assuming that the dominant mode within the cavity is the TMx
010 mode, the electric

and magnetic field components reduce from (14-32) to

Ex = E0 cos
(π
L
y ′
)

Hz = H0 sin
(π
L
y ′
)

(14-39)

Ey = Ez = Hx = Hy = 0

where E0 = −jωA010 and H0 = (π/µL)A010. The electric field structure within the
substrate and between the radiating element and the ground plane is sketched in
Figures 14.1(a,b) and 14.14(a). It undergoes a phase reversal along the length but it
is uniform along its width. The phase reversal along the length is necessary for the
antenna to have broadside radiation characteristics.

Using the equivalence principle of Section 12.2, each slot radiates the same fields
as a magnetic dipole with current density Ms equal to (14-38). By referring to Figures
14.16 the equivalent magnetic current densities along the two slots, each of width
W and height h, are both of the same magnitude and of the same phase. Therefore
these two slots form a two-element array with the sources (current densities) of the
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Figure 14.16 Rectangular microstrip patch radiating slots and equivalent magnetic current
densities.
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Figure 14.17 Typical E- and H -plane patterns of each microstrip patch slot, and of the two
together.

same magnitude and phase, and separated by L. Thus these two sources will add in
a direction normal to the patch and ground plane forming a broadside pattern. This is
illustrated in Figures 14.17(a) where the normalized radiation pattern of each slot in
the principal E-plane is sketched individually along with the total pattern of the two.
In the H -plane, the normalized pattern of each slot and of the two together is the same,
as shown in Figure 14.17(b).

The equivalent current densities for the other two slots, each of length L and height
h, are shown in Figure 14.18. Since the current densities on each wall are of the same
magnitude but of opposite direction, the fields radiated by these two slots cancel each
other in the principal H -plane. Also since corresponding slots on opposite walls are
180◦ out of phase, the corresponding radiations cancel each other in the principal E-
plane. This will be shown analytically. The radiation from these two side walls in
nonprincipal planes is small compared to the other two side walls. Therefore these two
slots are usually referred to as nonradiating slots.

C. Fields Radiated—TMx
010 Mode

To find the fields radiated by each slot, we follow a procedure similar to that used to
analyze the aperture in Section 12.5.1. The total field is the sum of the two-element
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Figure 14.18 Current densities on nonradiating slots of rectangular microstrip patch.

array with each element representing one of the slots. Since the slots are identical, this
is accomplished by using an array factor for the two slots.

Radiating Slots Following a procedure similar to that used to analyze the aperture
in Section 12.5.1, the far-zone electric fields radiated by each slot, using the equivalent
current densities of (14-38), are written as

Er 	 Eθ 	 0 (14-40a)

Eφ = +j k0hWE0e
−jk0r

2πr

{
sin θ

sin(X)

X

sin(Z)

Z

}
(14-40b)

where
X = k0h

2
sin θ cosφ (14-40c)

Z = k0W

2
cos θ (14-40d)

For very small heights (k0h� 1), (14-40b) reduces to

Eφ 	 +j V0e
−jk0r

πr


sin θ

sin

(
k0W

2
cos θ

)
cos θ


 (14-41)

where V0 = hE0.
According to the theory of Chapter 6, the array factor for the two elements, of the

same magnitude and phase, separated by a distance Le along the y direction is

(AF )y = 2 cos

(
k0Le

2
sin θ sinφ

)
(14-42)
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where Le is the effective length of (14-3). Thus, the total electric field for the two slots
(also for the microstrip antenna) is

Et
φ = +j

k0hWE0e
−jk0r

πr

{
sin θ

sin(X)

X

sin(Z)

Z

}

× cos

(
k0Le

2
sin θ sinφ

) (14-43)

where
X = k0h

2
sin θ cosφ (14-43a)

Z = k0W

2
cos θ (14-43b)

For small values of h (k0h� 1), (14-43) reduces to

Et
φ 	 +j

2V0e
−jk0r

πr


sin θ

sin

(
k0W

2
cos θ

)
cos θ


 cos

(
k0Le

2
sin θ sinφ

)
(14-44)

where V0 = hE0 is the voltage across the slot.

E -Plane (θ = 90◦, 0◦ ≤ φ ≤ 90◦ and 270◦ ≤ φ ≤ 360◦
)

For the microstrip antenna, the x-y plane (θ = 90◦, 0◦ ≤ φ ≤ 90◦ and 270◦ ≤ φ ≤
360◦) is the principal E-plane. For this plane, the expressions for the radiated fields
of (14-43)–(14-43b) reduce to

Et
φ = +j

k0WV0e
−jk0r

πr




sin

(
k0h

2
cosφ

)
k0h

2
cosφ


 cos

(
k0Le

2
sinφ

)
(14-45)

H -Plane (φ = 0◦, 0◦ ≤ θ ≤ 180◦
)

The principal H -plane of the microstrip antenna is the x-z plane (φ = 0◦, 0◦ ≤ θ ≤
180◦), and the expressions for the radiated fields of (14-43)–(14-43b) reduce to

Et
φ 	 +j

k0WV0e
−jk0r

πr


sin θ

sin

(
k0h

2
sin θ

)
k0h

2
sin θ

sin

(
k0W

2
cos θ

)
k0W

2
cos θ


 (14-46)

To illustrate the modeling of the microstrip using the cavity model, the principal
E- and H -plane patterns have been computed at f0 = 10 GHz for the rectangular
microstrip of Example 14.1 and Figure 14.8(a), with εr = 2.2, h = 0.1588 cm, L =
0.906 cm and Le = 1.068 cm. These are displayed in Figure 14.19(a) for the E-plane
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and Figure 14.19(b) for the H -plane where they are compared with measurements.
A good agreement is indicated. However there are some differences in the E-plane
primarily near grazing and in the region below the ground plane. The ground plane
was 10 cm× 10 cm. The differences near grazing in the E-plane are primarily because
the theory assumes the dielectric material of the substrate is truncated and does not
cover the ground plane beyond the edges of the patch while those in the back region
are because the theory assumes an infinite ground plane. The shape of the H -plane
patterns are not affected significantly by the dielectric cover or the edges. Edge effects
can be taken into account using diffraction theory [48], [79]. The noted asymmetry in
the measured and Moment Method computed patterns is due to the feed which is not
symmetrically positioned along the E-plane. The Moment Method analysis accounts for
the position of the feed, while the cavity model does not account for it. The pattern for
0◦ ≤ φ ≤ 180◦ [left half in Figure 14.19(a)] corresponds to observation angles which
lie on the same side of the patch as does the feed probe.

The presence of the dielectric-covered ground plane modifies the reflection coeffi-
cient, which influences the magnitude and phase of the image. This is similar to the
ground effects discussed in Section 4.8 of Chapter 4. To account for the dielectric, the
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Figure 14.19 Predicted and measured E- and H -plane patterns of rectangular microstrip patch
(L = 0.906 cm,W = 1.186 cm, h = 0.1588 cm, y0 = 0.3126 cm, εr = 2.2, f0 = 10 GHz).
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Figure 14.19 (continued )

reflection coefficient for vertical polarization of +1 must be replaced by the reflection
coefficient of (4-125) while the reflection coefficient for horizontal polarization of −1
must be replaced by the reflection coefficient of (4-128). Basically the introduction of
the reflection coefficients of (4-125) and (4-128) to account for the dielectric cover
of the ground plane is to modify the boundary conditions of the perfect conductor to
one with an impedance surface. The result is for (4-125) to modify the shape of the
pattern in the E -plane of the microstrip antenna, primarily for observation angles near
grazing (near the ground plane), as was done in Figure 4.31 for the lossy earth. Similar
changes are expected for the microstrip antenna. The changes in the pattern near grazing
come from the fact that, for the perfect conductor, the reflection coefficient for verti-
cal polarization is +1 for all observation angles. However for the dielectric-covered
ground plane (impedance surface), the reflection coefficient of (4-125) is nearly +1
for observation angles far away from grazing but begins to change very rapidly near
grazing and becomes −1 at grazing [79]; thus the formation of an ideal null at grazing.

Similarly the reflection coefficient of (4-128) should basically control the pattern
primarily in the H -plane. However, because the reflection coefficient for horizontal
polarization for a perfect conductor is −1 for all observation angles while that of
(4-128) for the dielectric-covered ground plane is nearly −1 for all observation angles,
the shape of the pattern in the H -plane is basically unaltered by the presence of
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the dielectric cover [79]. This is illustrated in Figure 4.32 for the earth. The pattern
also exhibits a null along the ground plane. Similar changes are expected for the
microstrip antenna.

Nonradiating Slots The fields radiated by the so-called nonradiating slots, each of
effective length Le and height h, are found using the same procedure as for the two
radiating slots. Using the fields of (14-39), the equivalent magnetic current density of
one of the nonradiating slots facing the +z axis is

Ms = −2n̂× Ea = ây2E0 cos

(
π

Le
y ′
)

(14-47)

and it is sketched in Figure 14.18. A similar one is facing the −z axis. Using the same
procedure as for the radiating slots, the normalized far-zone electric field components
radiated by each slot are given by

Eθ = −k0hLeE0e
−jk0r

2πr

{
Y cosφ

sinX

X

cos Y

(Y )2 − (π/2)2

}
ej(X+Y ) (14-48a)

Eφ = k0hLeE0e
−jk0r

2πr

{
Y cos θ sinφ

sinX

X

cosY

(Y )2 − (π/2)2

}
ej(X+Y ) (14-48b)

where

X = k0h

2
sin θ cosφ (14-48c)

Y = k0Le

2
sin θ sinφ (14-48d)

Since the two nonradiating slots form an array of two elements, of the same mag-
nitude but of opposite phase, separated along the z axis by a distance W , the array
factor is

(AF)z = 2j sin

(
k0W

2
cos θ

)
(14-49)

Therefore the total far-zone electric field is given by the product of each of (14-48a)
and (14-48b) with the array factor of (14-49).

In the H -plane (φ = 0◦, 0◦ ≤ θ ≤ 180◦), (14-48a) and (14-48b) are zero because the
fields radiated by each quarter cycle of each slot are cancelled by the fields radiated
by the other quarter. Similarly in the E-plane (θ = 90◦, 0◦ ≤ φ ≤ 90◦ and 270◦ ≤ φ ≤
360◦) the total fields are also zero because (14-49) vanishes. This implies that the fields
radiated by each slot are cancelled by the fields radiated by the other. The nonradiation
in the principal planes by these two slots was discussed earlier and demonstrated by
the current densities in Figure 14.18. However, these two slots do radiate away from
the principal planes, but their field intensity in these other planes is small compared
to that radiated by the two radiating slots such that it is usually neglected. Therefore
they are referred to as nonradiating slots.
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14.2.3 Directivity

As for every other antenna, the directivity is one of the most important figures-of-merit
whose definition is given by (2-16a) or

D0 = Umax

U0
= 4πUmax

Prad
(14-50)

Single Slot (k0h� 1) Using the electric field of (14-41), the maximum radiation
intensity and radiated power can be written, respectively, as

Umax = |V0|2
2η0π2

(
πW

λ0

)2

(14-51)

Prad = |V0|2
2η0π

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ dθ (14-52)

Therefore, the directivity of a single slot can be expressed as

D0 =
(

2πW

λ0

)2 1

I1
(14-53)

where

I1 =
∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ dθ

=
[
−2+ cos(X)+XSi(X)+ sin(X)

X

]
(14-53a)

X = k0W (14-53b)

Asymptotically the values of (14-53) vary as

D0 =




3.3(dimensionless) = 5.2 dB W � λ0

4

(
W

λ0

)
W � λ0

(14-54)

The directivity of a single slot can be computed using (14-53) and (14-53a). In addi-
tion, it can also be computed using (14-41) and the computer program Directivity of
Chapter 2. Since both are based on the same formulas, they should give the same
results. Plots of the directivity of a single slot for h = 0.01λ0 and 0.05λ0 as a function
of the width of the slot are shown in Figure 14.20. It is evident that the directivity of
a single slot is not influenced strongly by the height of the substrate, as long as it is
maintained electrically small.
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Figure 14.20 Computed directivity of one and two slots as a function of the slot width.

Two Slots (k0h� 1) For two slots, using (14-44), the directivity can be written as

D2 =
(

2πW

λ0

)2
π

I2
= 2

15Grad

(
W

λ0

)2

(14-55)

where Grad is the radiation conductance and

I2 =
∫ π

0

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ cos2

(
k0Le

2
sin θ sinφ

)
dθ dφ (14-55a)

The total broadside directivity D2 for the two radiating slots, separated by the
dominant TMx

010 mode field (antisymmetric voltage distribution), can also be written
as [8], [82]

D2 = D0DAF = D0
2

1+ g12
(14-56)

DAF = 2

1+ g12

g12 � 1	 2 (14-56a)

where

D0 = directivity of single slot [as given by (14-53) and (14-53a)]
DAF = directivity of array factor AF[

AF = cos

(
k0Le

2
sin θ sinφ

)]
g12 = normalized mutual conductance = G12/G1
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This can also be justified using the array theory of Chapter 6. The normalized mutual
conductance g12 can be obtained using (14-12), (14-12a), and (14-18a). Computed val-
ues based on (14-18a) show that usually g12 � 1; thus (14-56a) is usually a good
approximation to (14-56).

Asymptotically the directivity of two slots (microstrip antenna) can be expressed as

D2 =




6.6(dimensionless) = 8.2 dB W � λ0

8

(
W

λ0

)
W � λ0

(14-57)

The directivity of the microstrip antenna can now be computed using (14-55) and
(14-55a). In addition, it can also be computed using (14-44) and the computer program
Directivity of Chapter 2. Since they are based on the same formulas, they should give
the same results. Plots of directivity of a microstrip antenna, modeled by two slots,
for h = 0.01λ0 and 0.05λ0 are shown plotted as a function of the width of the patch
(W/λ0) in Figure 14.20. It is evident that the directivity is not a strong function of
the height, as long as the height is maintained electrically small. A typical plot of
the directivity of a patch for a fixed resonant frequency as a function of the substrate
height (h/λ0), for two different dielectrics, is shown in Figure 14.21.

The directivity of the slots also can be approximated by Kraus’s, (2-26), and Tai &
Pereira’s, (2-30a), formulas in terms of the E- and H -plane beamwidths, which can
be approximated by [36]

4E 	 2 cos−1

√
7.03λ2

0

4(3L2
e + h2)π2

(14-58)

4H 	 2 cos−1

√
1

2+ k0W
(14-59)
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Figure 14.21 Directivity variations as a function of substrate height for a square microstrip
patch antenna. (Courtesy of D. M. Pozar)
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The values of the directivities obtained using (14-58) and (14-59) along with either
(2-26) or (2-30a) will not be very accurate since the beamwidths, especially in the
E-plane, are very large. However, they can serve as guidelines.

Example 14.3

For the rectangular microstrip antenna of Examples 14.1 and 14.2, with overall dimensions of
L = 0.906 cm and W = 1.186 cm, substrate height h = 0.1588 cm, and dielectric constant
of εr = 2.2, center frequency of 10 GHz, find the directivity based on (14-56) and (14-56a).
Compare with the values obtained using (14-55) and (14-55a).

Solution: From the solution of Example 14.2

G1 = 0.00157 Siemens

G12 = 6.1683× 10−4 Siemens

g12 = G12/G1 = 0.3921

Using (14-56a)

DAF = 2

1+ g12
= 2

1+ 0.3921
= 1.4367 = 1.5736 dB

Using (14-53) and (14-53a)

I1 = 1.863

D0 =
(

2πW

λ0

)2 1

I1
= 3.312 = 5.201 dB

According to (14-56)

D2 = D0DAF = 3.312(1.4367) = 4.7584 = 6.7746 dB

Using (14-55a)
I2 = 3.59801

Finally, using (14-55)

D2 =
(

2πW

λ0

)2
π

I2
= 5.3873 = 7.314 dB

A MATLAB and FORTRAN computer program, designated as Microstrip, has
been developed to design and compute the radiation characteristics of rectangular and
circular microstrip patch antennas. The description of the program is found in the
corresponding READ ME file included in the CD attached to the book.

14.3 CIRCULAR PATCH

Other than the rectangular patch, the next most popular configuration is the circular
patch or disk, as shown in Figure 14.22. It also has received a lot of attention not only
as a single element [6], [10], [13], [46], [47], [51], but also in arrays [65] and [74].
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Figure 14.22 Geometry of circular microstrip patch antenna.

The modes supported by the circular patch antenna can be found by treating the patch,
ground plane, and the material between the two as a circular cavity. As with the rect-
angular patch, the modes that are supported primarily by a circular microstrip antenna
whose substrate height is small (h� λ) are TMz where z is taken perpendicular to
the patch. As far as the dimensions of the patch, there are two degrees of freedom to
control (length and width) for the rectangular microstrip antenna. Therefore the order
of the modes can be changed by changing the relative dimensions of the width and
length of the patch (width-to-length ratio). However, for the circular patch there is only
one degree of freedom to control (radius of the patch). Doing this does not change
the order of the modes; however, it does change the absolute value of the resonant
frequency of each [79].

Other than using full-wave analysis [51], [65], [74], the circular patch antenna can
only be analyzed conveniently using the cavity model [10], [46], [47]. This can be
accomplished using a procedure similar to that for the rectangular patch but now using
cylindrical coordinates [79]. The cavity is composed of two perfect electric conductors
at the top and bottom to represent the patch and the ground plane, and by a cylindrical
perfect magnetic conductor around the circular periphery of the cavity. The dielectric
material of the substrate is assumed to be truncated beyond the extent of the patch.

14.3.1 Electric and Magnetic Fields—TMz
mnp

To find the fields within the cavity, we use the vector potential approach. For TMz we
need to first find the magnetic vector potential Az, which must satisfy, in cylindrical
coordinates, the homogeneous wave equation of

∇2Az(ρ, φ, z)+ k2Az(ρ, φ, z) = 0. (14-60)

It can be shown that for TMz modes, whose electric and magnetic fields are related to
the vector potential Az by [79]

Eρ = −j 1

ωµε

∂2Az

∂ρ∂z
Hρ = 1

µ

1

ρ

∂Az

∂φ

Eφ = −j 1

ωµε

1

ρ

∂2Az

∂φ∂z
Hφ = − 1

µ

∂Az

∂ρ

Ez = −j 1

ωµε

(
∂2

∂z2
+ k2

)
Az Hz = 0

(14-61)
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subject to the boundary conditions of

Eρ(0 ≤ ρ ′ ≤ a, 0 ≤ φ′ ≤ 2π, z′ = 0) = 0

Eρ(0 ≤ ρ ′ ≤ a, 0 ≤ φ′ ≤ 2π, z′ = h) = 0

Hφ(ρ
′ = a, 0 ≤ φ′ ≤ 2π, 0 ≤ z′ ≤ h) = 0 (14-62)

the magnetic vector potential Az reduces to [79]

Az = BmnpJm(kρρ
′)[A2 cos(mφ′)+ B2 sin(mφ′)] cos(kzz

′) (14-63)

with the constraint equation of

(kρ)
2 + (kz)

2 = k2
r = ω2

r µε (14-63a)

The primed cylindrical coordinates ρ ′, φ′, z′ are used to represent the fields within the
cavity while Jm(x) is the Bessel function of the first kind of order m, and

kρ = χ ′mn/a (14-63b)

kz = pπ

h
(14-63c)

m = 0, 1, 2, . . . (14-63d)

n = 1, 2, 3, . . . (14-63e)

p = 0, 1, 2, . . . (14-63f)

In (14-63b) χ ′mn represents the zeroes of the derivative of the Bessel function Jm(x),
and they determine the order of the resonant frequencies. The first four values of χ ′mn ,
in ascending order, are

χ ′11 = 1.8412

χ ′21 = 3.0542

χ ′01 = 3.8318 (14-64)

χ ′31 = 4.2012

14.3.2 Resonant Frequencies

The resonant frequencies of the cavity, and thus of the microstrip antenna, are found
using (14-63a)–(14-63f). Since for most typical microstrip antennas the substrate height
h is very small (typically h < 0.05λ0), the fields along z are essentially constant and
are presented in (14-63f) by p = 0 and in (14-63c) by kz = 0. Therefore the resonant
frequencies for the TMz

mn0 modes can be written using (14-63a) as

(fr)mn0 = 1

2π
√
µε

(
χ ′mn

a

)
(14-65)
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Based on the values of (14-64), the first four modes, in ascending order, are TMz
110,

TMz
210, TMz

010, and TMz
310. The dominant mode is the TMz

110 whose resonant fre-
quency is

(fr)110 = 1.8412

2πa
√
µε

= 1.8412υ0

2πa
√
εr

(14-66)

where υ0 is the speed of light in free-space.
The resonant frequency of (14-66) does not take into account fringing. As was

shown for the rectangular patch, and illustrated in Figure 14.7, fringing makes the patch
look electrically larger and it was taken into account by introducing a length correction
factor given by (14-2). Similarly for the circular patch a correction is introduced by
using an effective radius ae, to replace the actual radius a, given by [6]

ae = a

{
1+ 2h

πaεr

[
ln
(πa

2h

)
+ 1.7726

]}1/2

(14-67)

Therefore the resonant frequency of (14-66) for the dominant TMz
110 should be modified

by using (14-67) and expressed as

(frc)110 = 1.8412υ0

2πae
√
εr

(14-68)

14.3.3 Design

Based on the cavity model formulation, a design procedure is outlined which leads to
practical designs of circular microstrip antennas for the dominant TMz

110 mode. The
procedure assumes that the specified information includes the dielectric constant of
the substrate (εr ), the resonant frequency (fr) and the height of the substrate h. The
procedure is as follows:

Specify
εr , fr (in Hz), and h (in cm)

Determine The actual radius a of the patch.

Design Procedure A first-order approximation to the solution of (14-67) for a is to find
ae using (14-68) and to substitute that into (14-67) for ae and for a in the logarithmic
function. Doing this leads to

a = F{
1+ 2h

πεrF

[
ln

(
πF

2h

)
+ 1.7726

]}1/2 (14-69)

where

F = 8.791× 109

fr
√
εr

(14-69a)

Remember that h in (14-69) must be in cm.
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Example 14.4

Design a circular microstrip antenna using a substrate (RT/duroid 5880) with a dielectric
constant of 2.2, h = 0.1588 cm (0.0625 in.) so as to resonate at 10 GHz.

Solution: Using (14-69a)

F = 8.791× 109

10× 109
√

2.2
= 0.593

Therefore using (14-69)

a = F{
1+ 2h

πεrF

[
ln

(
πF

2h

)
+ 1.7726

]}1/2
= 0.525 cm (0.207 in.)

An experimental circular patch based on this design was built and tested. It is probe fed from
underneath by a coaxial line and is shown in Figure 14.8(b). Its principal E- and H -plane
patterns are displayed in Figure 14.24(a, b).

14.3.4 Equivalent Current Densities and Fields Radiated

As was done for the rectangular patch using the cavity model, the fields radiated
by the circular patch can be found by using the Equivalence Principle whereby the
circumferential wall of the cavity is replaced by an equivalent magnetic current density
of (14-38) as shown in Figure 14.23. Based on (14-61)–(14-63) and assuming a TMz

110
mode field distribution beneath the patch, the normalized electric and magnetic fields
within the cavity for the cosine azimuthal variations can be written as

Eρ = Eφ = Hz = 0 (14-70a)

Ez = E0J1(kρ
′) cosφ′ (14-70b)

Hρ = j
E0

ωµ0

1

ρ
J1(kρ

′) sinφ′ (14-70c)

Hφ = j
E0

ωµ0
J ′1(kρ

′) cosφ′ (14-70d)

where ′ = ∂/∂ρ and φ′ is the azimuthal angle along the perimeter of the patch.
Based on (14-70b) evaluated at the electrical equivalent edge of the disk (ρ ′ = ae),

the magnetic current density of (14-38) can be written as

Ms = −2n̂× Ea|ρ ′=ae = âφ2E0J1(kae) cosφ′ (14-71)

Since the height of the substrate is very small and the current density of (14-71) is
uniform along the z direction, we can approximate (14-71) by a filamentary magnetic
current of

Im = hMs = âφ2hE0J1(kae) cosφ′ = âφ2V0 cosφ′ (14-71a)

where V0 = hE0J1(kae) at φ′ = 0.
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Figure 14.23 Cavity model and equivalent magnetic current density for circular microstrip
patch antenna.

Using (14-71a) the microstrip antenna can be treated as a circular loop. Referring
to Chapter 5 for the loop and using the radiation equations of Sections 12.3 and 12.6,
we can write that [10], [83]

Er = 0 (14-72a)

Eθ = −j k0aeV0e
−jk0r

2r
{cosφJ ′02} (14-72b)

Eφ = j
k0aeV0e

−jk0r

2r
{cos θ sinφJ02} (14-72c)

J ′02 = J0(k0ae sin θ)− J2(k0ae sin θ) (14-72d)

J02 = J0(k0ae sin θ)+ J2(k0ae sin θ) (14-72e)

where ae is the effective radius as given by (14-67). The fields in the principal planes
reduce to:

E -plane (φ = 0◦, 180◦, 0◦ ≤ θ ≤ 90◦
)

Eθ = j
k0aeV0e

−jk0r

2r
[J ′02] (14-73a)

Eφ = 0 (14-73b)

H -plane (φ = 90◦, 270◦, 0◦ ≤ θ ≤ 90◦
)

Eθ = 0 (14-74a)

Eφ = j
k0aeV0e

−jk0r

2r
[cos θJ02] (14-74b)

Patterns have been computed for the circular patch of Example 14.4, Figure 14.8(b)
based on (14-73a)–(14-74b), and they are shown in Figure 14.24 where they are
compared with measurements and Moment Method computed patterns. The noted
asymmetry in the measured and Moment Method computed patterns is due to the
feed which is not symmetrically positioned along the E-plane. The Moment Method
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analysis accounts for the position of the feed, while the cavity model does not account
for it. The pattern for the left half of Figure 14.24(a) corresponds to observation angles
which lie on the same side of the patch as does the feed probe. The ground plane was
15 cm× 15 cm.

14.3.5 Conductance and Directivity

The conductance due to the radiated power and directivity of the circular microstrip patch
antenna can be computed using their respective definitions of (14-10) and (14-50). For
each we need the radiated power, which based on the fields of (14-72b) and (14-72c) of
the cavity model can be expressed as

Prad = |V0|2 (k0ae)
2

960

∫ π/2

0
[J ′202 + cos2 θJ 2

02] sin θ dθ (14-75)
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Figure 14.24 Measured and computed (based on moment method and cavity models) E- and
H -plane patterns of circular microstrip patch antenna (a = 0.525 cm, ae = 0.598 cm, ρf = 0.1
cm, εr = 2.2, h = 0.1588 cm, f0 = 10 GHz, λ0 = 3 cm).
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Figure 14.24 (continued )

Therefore the conductance across the gap between the patch and the ground plane
at φ′ = 0◦ based on (14-10) and (14-75) can be written as

Grad = (k0ae)
2

480

∫ π/2

0
[J ′202 + cos2 θJ 2

02] sin θ dθ (14-76)

A plot of the conductance of (14-76) for the TMz
110 mode is shown in Figure 14.25.

While the conductance of (14-76) accounts for the losses due to radiation, it does not
take into account losses due to conduction (ohmic) and dielectric losses, which each
can be expressed as [10]

Gc = εmoπ(πµ0fr)
−3/2

4h2
√
σ

[(kae)
2 −m2] (14-77)

Gd = εmo tan δ

4µ0hfr
[(kae)

2 −m2] (14-78)
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Figure 14.25 Radiation conductance versus effective radius for circular microstrip patch oper-
ating in dominant TMz

110 mode.

where εmo = 2 for m = 0, εmo = 1 for m �= 0, and fr represents the resonant frequency
of the mn0 mode. Thus, the total conductance can be written as

Gt = Grad +Gc +Gd (14-79)

Based on (14-50), (14-72b), (14-72c), (14-75) and (14-76), the directivity for the
slot at θ = 0◦ can be expressed as

D0 = (k0ae)
2

120Grad
(14-80)

A plot of the directivity of the dominant TMz
110 mode as a function of the radius of

the disk is shown plotted in Figure 14.26. For very small values of the radius the
directivity approaches 3 (4.8 dB), which is equivalent of that of a slot above a ground
plane and it agrees with the value of (14-54) for W � λ0.

14.3.6 Resonant Input Resistance

As was the case for the rectangular patch antenna, the input impedance of a circular
patch at resonance is real. The input power is independent of the feed-point position
along the circumference. Taken the reference of the feed at φ′ = 0◦, the input resistance
at any radial distance ρ ′ = ρ0 from the center of the patch, for the dominant TM11

mode (the one that does not have a zero in the amplitude pattern normal to the patch),
can be written as

Rin(ρ
′ = ρ0) = 1

Gt

J 2
1 (kρ0)

J 2
1 (kae)

(14-81)

where Gt is the total conductance due to radiation, conduction (ohmic) and dielectric
losses, as given by (14-79). As was the case with the rectangular patch, the resonant
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Figure 14.26 Directivity versus effective radius for circular microstrip patch antenna operating
in dominant TMz

110 mode.

input resistance of a circular patch with an inset feed, which is usually a probe, can
be written as

Rin(ρ
′ = ρ0) = Rin(ρ

′ = ae)
J 2

1 (kρ0)

J 2
1 (kae)

(14-82)

Rin(ρ
′ = ae) = 1

Gt

(14-82a)

where Gt is given by (14-79). This is analogous to (14-20a) for the rectangular patch.
A MATLAB and FORTRAN computer program, designated as Microstrip, has

been developed to design and compute the radiation characteristics of rectangular and
circular microstrip patch antennas. The description of the program is found in the
corresponding READ ME file included in the CD attached to the book.

14.4 QUALITY FACTOR, BANDWIDTH, AND EFFICIENCY

The quality factor, bandwidth, and efficiency are antenna figures-of-merit, which are
interrelated, and there is no complete freedom to independently optimize each one.
Therefore there is always a trade-off between them in arriving at an optimum antenna
performance. Often, however, there is a desire to optimize one of them while reducing
the performance of the other.

The quality factor is a figure-of-merit that is representative of the antenna losses.
Typically there are radiation, conduction (ohmic), dielectric and surface wave losses.
Therefore the total quality factor Qt is influenced by all of these losses and is, in
general, written as [16]

1

Qt

= 1

Qrad
+ 1

Qc

+ 1

Qd

+ 1

Qsw

(14-83)
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where

Qt = total quality factor
Qrad = quality factor due to radiation (space wave) losses
Qc = quality factor due to conduction (ohmic) losses
Qd = quality factor due to dielectric losses
Qsw = quality factor due to surface waves

For very thin substrates, the losses due to surface waves are very small and can be
neglected. However, for thicker substrates they need to be taken into account [84].
These losses can also be eliminated by using cavities [50] and [51].

For very thin substrates (h� λ0) of arbitrary shapes (including rectangular and
circular), there are approximate formulas to represent the quality factors of the various
losses [16], [85]. These can be expressed as

Qc = h
√
πfµσ (14-84)

Qd = 1

tan δ
(14-85)

Qrad = 2ωεr
hGt/ l

K (14-86)

where tan δ is the loss tangent of the substrate material, σ is the conductivity of the
conductors associated with the patch and ground plane, Gt/l is the total conductance
per unit length of the radiating aperture and

K =

∫∫
area

|E|2 dA
∮

perimeter
|E|2 dl

(14-86a)

For a rectangular aperture operating in the dominant TMx
010 mode

K = L

4
(14-87a)

Gt/l = Grad

W
(14-87b)

The Qrad as represented by (14-86) is inversely proportional to the height of the sub-
strate, and for very thin substrates is usually the dominant factor.

The fractional bandwidth of the antenna is inversely proportional to the Qt of the
antenna, and it is defined by (11-36) or

3f

f0
= 1

Qt

(14-88)

However, (14-88) may not be as useful because it does not take into account impedance
matching at the input terminals of the antenna. A more meaningful definition of the
fractional bandwidth is over a band of frequencies where the VSWR at the input
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terminals is equal to or less than a desired maximum value, assuming that the VSWR
is unity at the design frequency. A modified form of (14-88) that takes into account
the impedance matching is [16]

3f

f0
= VSWR− 1

Qt

√
VSWR

(14-88a)

In general it is proportional to the volume, which for a rectangular microstrip antenna
at a constant resonant frequency can be expressed as

BW ∼ volume = area · height = length · width · height

∼ 1√
εr

1√
εr

√
εr = 1√

εr
(14-89)

Therefore the bandwidth is inversely proportional to the square root of the dielectric
constant of the substrate. A typical variation of the bandwidth for a microstrip antenna
as a function of the normalized height of the substrate, for two different substrates,
is shown in Figure 14.27. It is evident that the bandwidth increases as the substrate
height increases.

The radiation efficiency of an antenna is expressed by (2-90), and it is defined as the
power radiated over the input power. It can also be expressed in terms of the quality
factors, which for a microstrip antenna can be written as

ecdsw = 1/Qrad

1/Qt

= Qt

Qrad
(14-90)

where Qt is given by (14-83). Typical variations of the efficiency as a function of the
substrate height for a microstrip antenna, with two different substrates, are shown in
Figure 14.27.

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.20

0.40

0.60

0.80

1.00 15

10

5

0

ε

λ

E
ff

ic
ie

nc
y

Pe
rc

en
t b

an
dw

id
th

Substrate height h/ o

r = 2.2

εr = 10

εr = 10

εr = 2.2

BW

BW

ecdsw
ecdsw
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for rectangular microstrip patch for two different substrates. (SOURCE: D. M. Pozar, “Microstrip
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14.5 INPUT IMPEDANCE

In the previous sections of this chapter, we derived approximate expressions for the
resonant input resistance for both rectangular and circular microstrip antennas. Also,
approximate expressions were stated which describe the variation of the resonant input
resistance as a function of the inset-feed position, which can be used effectively
to match the antenna element to the input transmission line. In general, the input
impedance is complex and it includes both a resonant and a nonresonant part which is
usually reactive. Both the real and imaginary parts of the impedance vary as a function
of frequency, and a typical variation is shown in Figure 14.28. Ideally both the resis-
tance and reactance exhibit symmetry about the resonant frequency, and the reactance
at resonance is equal to the average of sum of its maximum value (which is positive)
and its minimum value (which is negative).

Typically the feed reactance is very small, compared to the resonant resistance, for
very thin substrates. However, for thick elements the reactance may be significant and
needs to be taken into account in impedance matching and in determining the resonant
frequency of a loaded element [34]. The variations of the feed reactance as a function of
position can be intuitively explained by considering the cavity model for a rectangular
patch with its four side perfect magnetic conducting walls [34], [85]. As far as the
impedance is concerned, the magnetic walls can be taken into account by introducing
multiple images with current flow in the same direction as the actual feed. When the
feed point is far away from one of the edges, the magnetic field associated with the
images and that of the actual feed do not overlap strongly. Therefore the inductance
associated with the magnetic energy density stored within a small testing volume near
the feed will be primarily due to the current of the actual feed. However, when the

1,200 1,225 1,250
–20

0

20

40

R
es

is
ta

nc
e,

 r
ea

ct
an

ce
 (

oh
m

s)

Frequency (MHz)

Resistance, R

Reactance, X

Peak resonant
resistance

Xf = feed reactance = 
Xmin + Xmax

2

Xmax

Xmin

Xf

Figure 14.28 Typical variation of resistance and reactance of rectangular microstrip antenna
versus frequency (Electromagnetics, Vol. 3, Nos. 3 and 4, p. 33, W. F. Richards, J. R. Zinecker,
and R. D. Clark, Taylor & Francis, Washington, D.C. Reproduced by permission. All rights
reserved).
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feed is at one of the edges, the feed and one of the images, which accounts for the
magnetic wall at that edge, coincide. Thus, the associated magnetic field stored energy
of the equivalent circuit doubles while the respective stored magnetic energy density
quadruples. However, because the volume in the testing region of the patch is only
half from that when the feed was far removed from the edge, the net stored magnetic
density is only double of that of the feed alone. Thus, the associated inductance and
reactance, when the feed is at the edge, is twice that when the feed is far removed
from the edge. When the feed is at a corner, there will be three images in the testing
volume of the patch, in addition to the actual feed, to take into account the edges that
form the corner. Using the same argument as above, the associated inductance and
reactance for a feed at a corner is four times that when the feed is removed from an
edge or a corner. Thus, the largest reactance (about a factor of four larger) is when the
feed is at or near a corner while the smallest is when the feed is far removed from an
edge or a corner.

Although such an argument predicts the relative variations (trends) of the reactance
as a function of position, they do predict very accurately the absolute values especially
when the feed is at or very near an edge. In fact it overestimates the values for feeds
right on the edge; the actual values predicted by the cavity model with perfect magnetic
conducting walls are smaller [34]. A formula that has been suggested to approximate
the feed reactance, which does not take into account any images, is

xf 	 −ηkh
2π

[
ln

(
kd

4

)
+ 0.577

]
(14-91)

where d is the diameter of the feed probe. More accurate predictions of the input
impedance, based on full-wave models, have been made for circular patches where an
attachment current mode is introduced to match the current distribution of the probe
to that of the patch [74].

14.6 COUPLING

The coupling between two or more microstrip antenna elements can be taken into
account easily using full-wave analyses. However, it is more difficult to do using
the transmission-line and cavity models, although successful attempts have been made
using the transmission-line model [75] and the cavity model [76], [77]. It can be shown
that coupling between two patches, as is coupling between two aperture or two wire
antennas, is a function of the position of one element relative to the other. This has
been demonstrated in Figure 4.20 for a vertical half-wavelength dipole above a ground
plane and in Figure 4.30 for a horizontal half-wavelength dipole above a ground plane.
From these two, the ground effects are more pronounced for the horizontal dipole. Also,
mutual effects have been discussed in Chapter 8 for the three different arrangements of
dipoles, as shown in Figure 8.20 whose side-by-side arrangement exhibits the largest
variations of mutual impedance.

For two rectangular microstrip patches the coupling for two side-by-side elements is
a function of the relative alignment. When the elements are positioned collinearly along
the E-plane, this arrangement is referred to as the E-plane, as shown in Figure 14.29(a);
when the elements are positioned collinearly along the H -plane, this arrangement is
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Figure 14.29 E- and H -plane arrangements of microstrip patch antennas.
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Figure 14.30 Measured and calculated mutual coupling between two coax-fed microstrip
antennas, for both E-plane and H -plane coupling, (W = 10.57 cm, L = 6.55 cm, h = 0.1588
cm, εr = 2.55, fr = 1,410 MHz). (SOURCE: D. M. Pozar, “Input Impedance and Mutual Cou-
pling of Rectangular Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-30, No.
6, November 1982.  1982 IEEE)

referred to as the H-plane, as shown in Figure 14.29(b). For an edge-to-edge separation
of s, the E-plane exhibits the smallest coupling isolation for very small spacing (typ-
ically s < 0.10λ0) while the H -plane exhibits the smallest coupling for large spacing
(typically s > 0.10λ0). The spacing at which one plane coupling overtakes the other
one depends on the electrical properties and geometrical dimensions of the microstrip
antenna. Typical variations are shown in Figure 14.30.

In general, mutual coupling is primarily attributed to the fields that exist along
the air-dielectric interface. The fields can be decomposed to space waves (with 1/ρ
radial variations), higher order waves (with 1/ρ2 radial variations), surface waves (with
1/ρ1/2 radial variations), and leaky waves [with exp(−λρ)/ρ1/2 radial variations] [23],
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[86]. Because of the spherical radial variation, space (1/ρ) and higher order waves
(1/ρ2) are most dominant for very small spacing while surface waves, because of their
1/ρ1/2 radial variations are dominant for large separations. Surface waves exist and
propagate within the dielectric, and their excitation is a function of the thickness of the
substrate [79]. In a given direction, the lowest order (dominant) surface wave mode
is TM(odd) with zero cutoff frequency followed by a TE(even), and alternatively by
TM(odd) and TE(even) modes. For a rectangular microstrip patch, the fields are TM
in a direction of propagation along the E-plane and TE in a direction of propagation
along the H -plane. Since for the E-plane arrangement of Figure 14.29(a) the elements
are placed collinearly along the E-plane where the fields in the space between the
elements are primarily TM, there is a stronger surface wave excitation (based on
a single dominant surface wave mode) between the elements, and the coupling is
larger. However for the H -plane arrangement of Figure 14.29(b), the fields in the
space between the elements are primarily TE and there is not a strong dominant mode
surface wave excitation; therefore there is less coupling between the elements. This
does change as the thickness of the substrate increases which allows higher order TE
surface wave excitation.

The mutual conductance between two rectangular microstrip patches has also been
found using the basic definition of conductance given by (14-18), the far fields based
on the cavity model, and the array theory of Chapter 6. For the E-plane arrangement
of Figure 14.29(a) and for the odd mode field distribution beneath the patch, which is
representative of the dominant mode, the mutual conductance is [8]

G12 = 1

π

√
ε

µ

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ

{
2J0

(
Y

λ0
2π sin θ

)

+J0

(
Y + L

λ0
2π sin θ

)
+ J0

(
Y − L

λ0
2π sin θ

)}
dθ (14-92)

where Y is the center-to-center separation between the slots and J0 is the Bessel
function of the first kind of order zero. The first term in (14-92) represents the mutual
conductance of two slots separated by a distance X along the E-plane while the second
and third terms represent, respectively, the conductances of two slots separated along
the E-plane by distances Y + L and Y − L. Typical normalized results are shown by
the solid curve in Figure 14.31.

For the H -plane arrangement of Figure 14.29(b) and for the odd mode field distri-
bution beneath the patch, which is representative of the dominant mode, the mutual
conductance is [8]

G12 = 2

π

√
ε

µ

∫ π

0




sin

(
k0W

2
cos θ

)
cos θ




2

sin3 θ cos

(
Z

λ0
2π cos θ

)

·
{

1+ J0

(
L

λ0
2π sin θ

)}
dθ (14-93)
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Figure 14.31 E- and H -plane mutual conductance versus patch separation for rectangular
microstrip patch antennas (W = 1.186 cm, L = 0.906 cm, εr = 2.2, λ0 = 3 cm).

where Z is the center-to-center separation between the slots and J0 is the Bessel
function of the first kind of order zero. The first term in (14-93) represents twice the
mutual conductance of two slots separated along the H -plane by a distance Z while the
second term represents twice the conductance between two slots separated along the
E-plane by a distance L and along the H -plane by a distance Z. Typical normalized
results are shown by the dashed curve in Figure 14.31. By comparing the results of
Figure 14.31 it is clear that the mutual conductance for the H -plane arrangement, as
expected, decreases with distance faster than that of the E-plane. Also it is observed
that the mutual conductance for the E-plane arrangement is higher for wider elements
while it is lower for wider elements for the H -plane arrangement.

14.7 CIRCULAR POLARIZATION

The patch elements that we discussed so far, both the rectangular and the circular,
radiate primarily linearly polarized waves if conventional feeds are used with no mod-
ifications. However, circular and elliptical polarizations can be obtained using various
feed arrangements or slight modifications made to the elements. We will discuss here
some of these arrangements.

Circular polarization can be obtained if two orthogonal modes are excited with a
90◦ time-phase difference between them. This can be accomplished by adjusting the
physical dimensions of the patch and using either single, or two, or more feeds. There
have been some suggestions made and reported in the literature using single patches.
For a square patch element, the easiest way to excite ideally circular polarization is
to feed the element at two adjacent edges, as shown in Figures 14.32(a,b), to excite
the two orthogonal modes; the TMx

010 with the feed at one edge and the TMx
001 with

the feed at the other edge. The quadrature phase difference is obtained by feeding the
element with a 90◦ power divider or 90◦ hybrid. Examples of arrays of linear elements
that generate circular polarization are discussed in [87].
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Figure 14.32 Rectangular and circular patch arrangements for circular polarization. (SOURCE: J.
Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans.
Antennas Propagat., Vol. AP-32, No. 9, Sept. 1984.  1984 IEEE)

For a circular patch, circular polarization for the TMz
110 mode is achieved by using

two feeds with proper angular separation. An example is shown in Figure 14.32(c)
using two coax feeds separated by 90◦ which generate fields that are orthogonal to
each other under the patch, as well as outside the patch. Also with this two-probe
arrangement, each probe is always positioned at a point where the field generated
by the other probe exhibits a null; therefore there is very little mutual coupling
between the two probes. To achieve circular polarization, it is also required that the
two feeds are fed in such a manner that there is 90◦ time-phase difference between
the fields of the two; this is achieved through the use of a 90◦ hybrid, as shown in
Figure 14.32(c). The shorting pin is placed at the center of the patch to ground the
patch to the ground plane which is not necessary for circular polarization but is used
to suppress modes with no φ variations and also may improve the quality of circular
polarization.
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TABLE 14.1 Feed Probe Angular Spacing of Different Modes for Circular Polarization
(after [88])

TM110 TM210 TM310 TM410 TM510 TM610

45◦ 30◦ 22.5◦ 18◦, 54◦ 15◦, 45◦

α 90◦ or or or or or
135◦ 90◦ 67.5◦ 90◦ 75◦

For higher order modes, the spacing between the two feeds to achieve circular polar-
ization is different. This is illustrated in Figure 14.32(d) and tabulated in Table 14.1,
for the TMz

110 [same as in Figure 14.32(c)], TMz
210, TMz

310, and TMz
410 modes [88].

However to preserve symmetry and minimize cross polarization, especially for rela-
tively thick substrates, two additional feed probes located diametrically opposite of the
original poles are usually recommended. The additional probes are used to suppress
the neighboring (adjacent) modes which usually have the next highest magnitudes [88].
For the even modes (TMz

210 and TMz
410), the four feed probes should have phases of

0◦, 90◦, 0◦ and 90◦ while the odd modes (TMz
110 and TMz

310) should have phases of
0◦, 90◦, 180◦ and 270◦, as shown in Figure 14.32(d) [88].

To overcome the complexities inherent in dual-feed arrangements, circular polariza-
tion can also be achieved with a single feed. One way to accomplish this is to feed the
patch at a single point to excite two orthogonal degenerate modes (of some resonant
frequency) of ideally equal amplitudes. By introducing then a proper asymmetry in
the cavity, the degeneracy can be removed with one mode increasing with frequency
while the orthogonal mode will be decreasing with frequency by the same amount.
Since the two modes will have slightly different frequencies, by proper design the field
of one mode can lead by 45◦ while that of the other can lag by 45◦ resulting in a
90◦ phase difference necessary for circular polarization [16]. To achieve this, several
arrangements have been suggested.

To illustrate the procedure, let us consider a square patch, as shown in Figure 14.33(a)
[34]. Initially assume that the dimensions L and W are nearly the same such that the
resonant frequencies of the TMx

010 and TMx
001 overlap significantly. In the broadside

direction to the patch, the TMx
010 mode produces an electric far-fieldEy which is linearly

polarized in the y direction while the TMx
001 mode produces an electric far-fieldEz which

is linearly polarized in the z direction. These fields can be expressed as

Ey = c

sin
(π
L
y ′
)

k2(1− j/Qt)− (ky)2
(14-94a)

Ez = c

sin
( π
W
z′
)

k2(1− j/Qt)− (kz)2
(14-94b)

ky = π

L
(14-94c)

kz = π

W
(14-94d)
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Figure 14.33 Single-feed arrangements for circular polarization of rectangular microstrip
patches.

where c (a proportionality constant) and Qt (Qt = 1/ tan δeff ) are identical in the
broadside direction for both polarizations. If the feed point (y ′, z′) is selected along
the diagonal so that

y ′

L
= z′

W
(14-95)

then the axial ratio at broadside of the Ey to the Ez field can be expressed as

Ey

Ez

	 k(1− j/2Qt)− ky

k(1− j/2Qt)− kz
(14-96)

To achieve circular polarization, the magnitude of the axial ratio must be unity while
the phase must be ±90◦. This is achieved when the two phasors representing the
numerator and denominator are of equal magnitude and 90◦ out of phase. This can
occur when [34]

ky − kz = k

Qt

(14-97)

and the operating frequency is selected at the midpoint between the resonant frequencies
of the TMx

010 and TMx
001 modes. The condition of (14-97) is satisfied when

L = W

(
1+ 1

Qt

)
(14-98)
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Based on (14-98) the resonant frequencies f1 and f2 of the bandwidth of (14-88a)
associated with the two lengths L and W of a rectangular microstrip are [89]

f1 = f0√
1+ 1/Qt

(14-99a)

f2 = f0

√
1+ 1/Qt (14-99b)

where f0 is the center frequency.
Feeding the element along the diagonal starting at the lower left corner toward the

upper right corner, shown dashed in Figure 14.33(b), yields ideally left-hand circular
polarization at broadside. Right-hand circular polarization can be achieved by feeding
along the opposite diagonal, which starts at the lower right corner and proceeds toward
the upper left corner, shown dashed in Figure 14.33(c). Instead of moving the feed point
each time to change the modes in order to change the type of circular polarization,
varactor diodes can be used to adjust the capacitance and bias, which effectively shifts
by electrical means the apparent physical location of the feed point.

This type of a feed to achieve circular polarization at broadside has been shown
experimentally to extend to a larger angular region [18]. However, the bandwidth
over which circular polarization is maintained, even at broadside, is very narrow. An
empirical formula of the percent bandwidth is [34]

BW (percent) 	 12
AR

Qt

(14-100)

where the axial ratio is specified in dB. The design formulas of (14-98) and (14-100)
yield good results for Q values as low as 10. Better designs are achieved for values
of Q much greater than 10.

Circular polarization can also be achieved by feeding the element off the main
diagonals. This can be accomplished if the dimensions of the rectangular patch are
related by

L = W


1+

A+ 1

A

2Qt


 (14-101)

where

A =
cos

(
π
y ′

L

)

cos

(
π
z′

W

) (14-101a)

There are some other practical ways of achieving nearly circular polarization. For
a square patch, this can be accomplished by cutting very thin slots as shown in
Figures 14.34(a,b) with dimensions

c = L

2.72
= W

2.72
(14-102a)

d = c

10
= L

27.2
= W

27.2
(14-102b)
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Figure 14.34 Circular polarization for square patch with thin slots on patch (c = W/2.72 =
L/2.72, d = c/10 = W/27.2 = L/27.2).
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Figure 14.35 Circular polarization by trimming opposite corners of a square patch and by
making circular patch slightly elliptical and adding tabs.

An alternative way is to trim the ends of two opposite corners of a square patch and
feed at points 1 or 3, as shown in Figure 14.35(a). Circular polarization can also be
achieved with a circular patch by making it slightly elliptical or by adding tabs, as
shown in Figure 14.35(b).

Example 14.5

The fractional bandwidth at a center frequency of 10 GHz of a rectangular patch antenna
whose substrate is RT/duroid 5880 (εr = 2.2) with height h = 0.1588 cm is about 5% for
a VSWR of 2:1. Within that bandwidth, find resonant frequencies associated with the two
lengths of the rectangular patch antenna, and the relative ratio of the two lengths.

Solution: The total quality factor Qt of the patch antenna is found using (14-88a) or

Qt = 1

0.05
√

2
= 14.14
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Using (14-99a) and (14-99b)

f1 = 10× 109

√
1+ 1/14.14

= 9.664 GHz

f2 = 10× 109
√

1+ 1/14.14 = 10.348 GHz

The relative ratio of the two lengths according to (14-98) is

L

W
= 1+ 1

Qt

= 1+ 1

14.14
= 1.07

which makes the patch nearly square.

14.8 ARRAYS AND FEED NETWORKS

Microstrip antennas are used not only as single elements but are very popular in
arrays [17], [23], [30], [31], [50], [51], [54], [63]–[65], and [74]–[77]. As discussed
in Chapter 6, arrays are very versatile and are used, among other things, to synthesize
a required pattern that cannot be achieved with a single element. In addition, they
are used to scan the beam of an antenna system, increase the directivity, and perform
various other functions which would be difficult with any one single element. The
elements can be fed by a single line, as shown in Figure 14.36(a), or by multiple lines
in a feed network arrangement, as shown in Figure 14.36(b). The first is referred to as
a series-feed network while the second is referred to as a corporate-feed network.

The corporate-feed network is used to provide power splits of 2n (i.e., n = 2, 4,
8, 16, 32, etc.). This is accomplished by using either tapered lines, as shown in
Figure 14.37(a), to match 100-ohm patch elements to a 50-ohm input or using quarter-
wavelength impedance transformers, as shown in Figure 14.37(b) [3]. The design of
single- and multiple-section quarter-wavelength impedance transformers is discussed
in Section 9.7.

Series-fed arrays can be conveniently fabricated using photolithography for both the
radiating elements and the feed network. However, this technique is limited to arrays
with a fixed beam or those which are scanned by varying the frequency, but it can be
applied to linear and planar arrays with single or dual polarization. Also any changes

(b) Corporate feed

(a) Series feed

Figure 14.36 Feed arrangements for microstrip patch arrays.
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4
λ

Figure 14.37 Tapered and λ/4 impedance transformer lines to match 100-ohm patches to a
50-ohm line. (SOURCE: R. E. Munson, “Conformal Microstrip Antennas and Microstrip Phased
Arrays,” IEEE Trans. Antennas Propagat., Vol. AP-22, No. 1, January 1974.  1974 IEEE)

in one of the elements or feed lines affects the performance of the others. Therefore
in a design it is important to be able to take into account these and other effects, such
as mutual coupling, and internal reflections.

Corporate-fed arrays are general and versatile. With this method the designer has
more control of the feed of each element (amplitude and phase) and it is ideal for
scanning phased arrays, multibeam arrays, or shaped-beam arrays. As discussed in
Chapter 6, the phase of each element can be controlled using phase shifters while the
amplitude can be adjusted using either amplifiers or attenuators. An electronically-
steered phased array (ATDRSS) of 10× 10 rectangular microstrip elements, operating
in the 2–2.3 GHz frequency range and used for space-to-space communications, is
shown in Figure 14.38.

Those who have been designing and testing microstrip arrays indicate that radiation
from the feed line, using either a series or corporate-feed network, is a serious problem
that limits the cross-polarization and side lobe level of the arrays [38]. Both cross-
polarization and side lobe levels can be improved by isolating the feed network from
the radiating face of the array. This can be accomplished using either probe feeds or
aperture coupling.

Arrays can be analyzed using the theory of Chapter 6. However, such an approach
does not take into account mutual coupling effects, which for microstrip patches can be
significant. Therefore for more accurate results, full-wave solutions must be performed.
In microstrip arrays [63], as in any other array [90], mutual coupling between elements
can introduce scan blindness which limits, for a certain maximum reflection coefficient,
the angular volume over which the arrays can be scanned. For microstrip antennas,
this scan limitation is strongly influenced by surface waves within the substrate. This
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Figure 14.38 Antenna array of 10× 10 rectangular microstrip patches, 2–2.3 GHz, for
space-to-space communications. (Courtesy: Ball Aerospace & Technologies Corp.)

scan angular volume can be extended by eliminating surface waves. One way to do
this is to use cavities in conjunction with microstrip elements [50], [51]. Figure 14.39
shows an array of circular patches backed by either circular or rectangular cavities.
It has been shown that the presence of cavities, either circular or rectangular, can
have a pronounced enhancement in the E-plane scan volume, especially for thicker
substrates [51]. The H -plane scan volume is not strongly enhanced. However the shape
of the cavity, circular or rectangular, does not strongly influence the results. Typical
results for broadside-matched reflection coefficient infinite array of circular patches,
with a substrate 0.08λ0 thick and backed by circular and rectangular cavities, are
shown in Figure 14.40 for the E-plane and H -plane. The broadside-matched reflection
coefficient ?(θ, φ) is defined as

?(θ, φ) = Zin(θ, φ)− Zin(0, 0)

Zin(θ, φ)+ Z∗in(0, 0)
(14-103)

where Zin(θ, φ) is the input impedance when the main beam is scanned toward an angle
(θ, φ). The results are compared with those of a conventional cavity (noncavity backed).
It is apparent that there is a significant scan enhancement for the E-plane, especially
for a VSWR of about 2:1. H -plane enhancement occurs for reflection coefficients
greater than about 0.60. For the conventional array, the E-plane response exhibits a
large reflection coefficient, which approaches unity, near a scan angle of θ0 = 72.5◦.
This is evidence of scan blindness which ideally occurs when the reflection coefficient
is unity, and it is attributed to the coupling between the array elements due to leaky
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Figure 14.39 Array of circular patches backed by circular cavities. (Courtesy J. T. Aberle and
F. Zavosh)
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Figure 14.40 E- and H -plane broadside-matched input reflection coefficient versus scan angle
for infinite array of circular microstrip patches with and without cavities. (Courtesy J. T. Aberle
and F. Zavosh)

waves [63]. Scan blindness occurs for both the E- and H -planes at grazing incidence
(θ0 = 90◦).

A summary of the pertinent parameters, and associated formulas and equation num-
bers for this chapter are listed in Table 14.2.
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TABLE 14.2 Summary of Important Parameters and Associated Formulas and
Equation Numbers

Parameter Formula Equation Number

Transmission-Line Model-Rectangular Patch

Effective dielectric
constant
εreff (W/h� 1)

εreff = εr + 1

2
+ εr − 1

2

[
1+ 12

h

W

]−1/2
(14-1)

Effective length
Leff Leff = L+ 23L (14-3)

Normalized
extension length
3L/h 3L

h
= 0.412

(εreff + 0.3)

[
W

h
+ 0.264

]

(εreff − 0.258)

[
W

h
+ 0.8

]
(14-2)

Resonant
frequency;
dominant mode
(L > W)

(no fringing)

(fr )010 = 1

2L
√
εr
√
µoεo

(14-4)

Resonant
frequency;
dominant mode
(L > W)

(with fringing)

(frc)010 = 1

2Leff
√
εreff

√
µoεo

(14-5)

Slot conductance
G1 G1 = W

120λo

[
1− 1

24
(koh)

2

]
,

h

λo
<

1

10
(14-8a)

Slot susceptance
B1 B1 = W

120λo
[1− 0.636 ln(koh)],

h

λo
<

1

10
(14-8b)

Input slot
resistance Rin
(at resonance;
no coupling)

Rin = 1

2G1

(14-16)

Input slot
resistance Rin
(at resonance;
with coupling)

Rin = 1

2(G1 ±G12)

+ for modes with odd symmetry
− for modes with even symmetry

(14-17)

Input resistance
Rin(y = yo)

(no coupling)
Rin(y = yo) = Rin(y = 0) cos2

(π
L
yo

)
= 1

2G1
cos2

(π
L
yo

)
(14-20a)

(continued overleaf )
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TABLE 14.2 (continued )

Input resistance
Rin(y = yo)

(with coupling)
Rin(y = yo) = Rin(y = 0) cos2

(π
L
yo

)
= 1

2(G1 ±G12)
cos2

(π
L
yo

)
(14-20a)

Cavity Model-Rectangular Patch

Resonant
frequency (frc)010;
dominant mode
(L > W) (no
fringing)

(frc)010 = 1

2L
√
εr
√
µoεo

(14-33)

Resonant
frequency (fr )010;
dominant mode
(L > W)

(with fringing)

(fr )010 = 1

2Leff
√
εreff

√
µoεo

(14-5)

Resonant
frequency (fr )001;
dominant mode
(L > W >

L/2 > h)

(no fringing)

(fr )001 = 1

2W
√
εr
√
µoεo

(14-34)

Resonant
frequency (fr )020;
dominant mode
(L > L/2 > h);
(no fringing)

(fr )020 = 1

L
√
εr
√
µoεo

(14-35)

Total electric field
Et
φ

Et
φ = Eφ(single slot)× AF (14-40a)–

(14-41), (14-43)

Array factor (AF)y

(AF)y = 2 cos

(
koLe

2
sin θ sinφ

)
(14-42)

Directivity Do

(single slot)

Do =




3.3 (dimensionless) = 5.2 dB; W � λo

4

(
W

λo

)
; W � λo

(14-54)

Directivity Do

(two slots)

Do =




6.6 (dimensionless) = 8.2 dB; W � λo

8

(
W

λo

)
; W � λo

(14-57)
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TABLE 14.2 (continued )

Cavity Model-Circular Patch

Resonant
frequency (fr )110;
dominant mode
TM110 mode;
(no fringing)

(fr )110 = 1.8412

2πa
√
εr
√
µoεo

(14-66)

Resonant
frequency (frc)110;
dominant mode
TM110 mode;
(with fringing)

(frc)110 = 1.8412

2πae
√
εr
√
µoεo

(14-68)

Effective radius ae

ae = a

{
1+ 2h

πaεr

[
ln
(πa

2h

)
+ 1.7726

]}1/2
(14-68)

Physical radius a

a = F{
1+ 2h

πεrF

[
ln

(
πF

2h

)
+ 1.7726

]}1/2

F = 8.791× 109

fr
√
εr

; (h in cm)

(14-69)

(14-69a)

Directivity Do

Do = (koae)
2

120Grad

(14-80)

Radiation
conductance Grad Grad = (koae)

2

480

∫ π/2

0
[(J ′02)

2 + cos2 θ(J02)
2] sin θ dθ (14-76)

J ′02 = Jo(koae sin θ)− J2(koae sin θ) (14-72d)

J02 = Jo(koae sin θ)+ J2(koae sin θ) (14-72e)

Rin(ρ
′ = ρo) = Rin(ρ

′ = ae)
J 2

1 (kρo)

J 2
1 (kae)

(14-82)

Rin(ρ
′ = ae) = 1

Gt

(14-82a)

Gt = Grad +Gc +Gd (14-79)

Input resistance
Rin(ρ

′ = ρo)

Gc = εmoπ(πµofr )
−3/2

4h2
√
σ

[(kae)2 −m2] (14-77)

Gd = εmo tan δ

4µohf r
[(kae)2 −m2] (14-78)

where for mn0 mode (m = n = 1 for dominant mode)

εmo = 2 for m = 0

εmo = 1 for m �= 0

(continued overleaf )
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TABLE 14.2 (continued )

Total quality factor
Qt

1

Qt

= 1

Qrad
+ 1

Qc

+ 1

Qd

+ 1

Qsw

For h� λo

Qc = h
√
πfµσ ; Qd = 1

tan δ

Qrad = 2ωεr
hGt /l

K ; K =

∫∫
area

|E|2 dA
∮

perimeter
|E|2 dl

(14-83)

(14-84), (14-85)

(14-86), (14-86a)

Fractional

bandwidth
3f

fo

3f

fo
= VSWR − 1

Qt

√
VSWR

(14-88a)

14.9 MULTIMEDIA

In the CD that is part of the book, the following multimedia resources are included for
the review, understanding, and visualization of the material of this chapter:

a. Java-based interactive questionnaire, with answers.
b. Matlab and Fortran computer program, designated Microstrip, for computing

and displaying the radiation characteristics of rectangular and circular microstrip
antennas.

c. Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

14.1. A microstrip line is used as a feed line to a microstrip patch. The substrate of
the line is alumina (εr 	 10) while the dimensions of the line are w/h = 1.2
and t/h = 0. Determine the effective dielectric constant and characteristic
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impedance of the line. Compare the computed characteristic impedance to
that of a 50-ohm line.

14.2. A microstrip transmission line of beryllium oxide (εr 	 6.8) has a width-
to-height ratio of w/h = 1.5. Assuming that the thickness-to-height ratio is
t/h = 0, determine:

(a) effective dielectric constant

(b) characteristic impedance of the line

14.3. A microstrip line, which is open at one end and extends to infinity toward the
other end, has a center conductor width = 0.4λo, substrate height of 0.05λo,
and it is operating at 10 GHz. The dielectric constant of the substrate is 2.25.
This type of microstrip line is used to construct rectangular patch antennas.
Determine the following:

(a) The input admittance (real and imaginary parts) of the microstrip line at
the leading open edge. Is it capacitive or inductive?

(b) What kind of a lumped element (capacitor or inductor) can be placed at the
leading open edge between the center conductor of the line and its ground
plane to resonate the admittance? What is the value of the lumped element?

(c) The new input impedance, taking into account the presence of the lumped
element.

14.4. Design a rectangular microstrip antenna so that it will resonate at 2 GHz.
The idealistic lossless substrate (RT/Duroid 6010.2) has a dielectric constant
of 10.2 and a height of 0.05 in. (0.127 cm).

(a) Determine the physical dimensions (width and length) of the patch
(in cm).

(b) Approximate range of lengths (in cm) between the two radiating slots of
the rectangular patch, if we want the input impedance (taking into account
both radiating slots) to be real.

(c) What is the real input impedance of Part b? Neglect coupling.

(d) Location (in cm from the leading radiating slot) of a coaxial feed so that
the total input impedance is 150 ohms.

14.5. Design a rectangular microstrip antenna to resonate at 9 GHz using a substrate
with a dielectric constant of 2.56. Determine the following:

(a) Directivity of a single radiating slot (dimensionless and in dB ). Use the
cavity model.

(b) Approximate directivity of the entire patch (dimensions and in dB ). Use
the cavity model and neglect coupling between the two slots.

14.6. A rectangular microstrip antenna was designed, without taking into account
fringing effects from any of the four edges of the patch, to operate at a
center frequency of 4.6 GHz. The width of the patch was chosen to be
W = 1.6046 cm and the substrate had a height of 0.45 cm and a dielectric
constant of 6.8. However, when the patch was tested, it was found to resonate
at a frequency of 4.046 GHz!

(a) Find the physical length L of the patch (in cm).
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(b) Why did the patch resonate at 4.046 GHz, instead of the designed fre-
quency of 4.6 GHz? Verify the new resonant frequency. Must justify
your answer mathematically. Show that the measured resonant frequency
is correct.

14.7. Cellular and mobile telephony, using earth-based repeaters, has received wide
acceptance and has become an essential means of communication for busi-
ness, even for the household. Cellular telephony by satellites is the wave of
the future and communication systems are being designed for that purpose.
The present allocated frequency band for satellites is at L-band (	 1.6 GHz).
Various antennas are being examined for that purpose; one candidate is the
microstrip patch antenna. Design a rectangular microstrip patch antenna, based
on the dominant mode, that can be mounted on the roof of a car to be used
for satellite cellular telephone. The designed center frequency is 1.6 GHz, the
dielectric constant of the substrate is 10.2 (i.e., RT/duroid), and the thickness
of the substrate is 0.127 cm. Determine the
(a) dimensions of the rectangular patch (in cm)
(b) resonant input impedance, assuming no coupling between the two radiat-

ing slots
(c) mutual conductance between the two radiating slots of the patch
(d) resonant input impedance, taking into account coupling
(e) position of the feed to match the patch antenna to a 75-ohm line

14.8. Repeat the design of Problem 14.7 using a substrate with a dielectric constant
of 2.2 (i.e., RT/duroid 5880) and with a height of 0.1575 cm. Are the new
dimensions of the patch realistic for the roof of a personal car?

14.9. Design a rectangular microstrip patch with dimensions W and L, over a sin-
gle substrate, whose center frequency is 10 GHz. The dielectric constant of
the substrate is 10.2 and the height of the substrate is 0.127 cm (0.050 in.).
Determine the physical dimensions W and L (in cm) of the patch, taking into
account field fringing.

14.10. Using the transmission-line model of Figure 14.9(b), derive (14-14)–(14-15).

14.11. To take into account coupling between the two radiating slots of a rectangu-
lar microstrip patch, the resonant input resistance is represented by (14-17).
Justify, explain, and/or show why the plus (+) sign is used for modes with
odd (antisymmetric) resonant voltage distributions beneath the patch while
the minus (−) sign is used for modes with even (symmetric) resonant voltage
distributions.

14.12. Show that for typical rectangular microstrip patches G1/Yc � 1 and B1/Yc �
1 so that (14-20) reduces to (14-20a).

14.13. A rectangular microstrip patch antenna is operating at 10 GHz with εr =
10.2 and dimensions of length L = 0.4097 cm, width W = 0.634 cm, and
substrate height h = 0.127 cm. It is desired to feed the patch using a probe
feed. Neglecting mutual coupling, calculate:
(a) What is the input impedance of the patch at one of the radiating edges

based on the transmission-line model?
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(b) At what distance y0 (in cm) from one of the radiating edges should the
coax feed be placed so that the input impedance is 50 ohms?

14.14. A rectangular microstrip patch antenna, whose input impedance is 152.44 ohms
at its leading radiating edge, is fed by a microstrip line as shown in Figure 14.11.
Assuming the width of the feeding line is W0 = 0.2984 cm, the height of the
substrate is 0.1575 cm and the dielectric constant of the substrate is 2.2, at what
distance y0 should the microstrip patch antenna be fed so as to have a perfect
match between the line and the radiating element? The overall microstrip patch
element length is 0.9068 cm.

14.15. The rectangular microstrip patch of Example 14.2 is fed by a microstrip trans-
mission line of Figure 14.5. In order to reduce reflections at the inset feed point
between the line and the patch element, design the microstrip line so that its
characteristic impedance matches that of the radiating element.

14.16. Repeat the design of Example 14.2 so that the input impedance of the radiating
patch at the feed point is:

(a) 75 ohms

(b) 100 ohms

Then, assuming the feed line is a microstrip line, determine the dimensions of
the line so that its characteristic impedance matches that of the radiating patch.

14.17. A rectangular microstrip patch antenna has dimensions of L = 0.906 cm, W =
1.186 cm, and h = 0.1575 cm. The dielectric constant of the substrate is εr =
2.2. Using the geometry of Figure 14.13 and assuming no fringing, determine
the resonant frequency of the first 4 TMZ

0np modes, in order of ascending
resonant frequency.

14.18. Derive the TMZ
mnp field configurations (modes) for the rectangular microstrip

patch based on the geometry of Figure P14.18. Determine the:

(a) eigenvalues

(b) resonant frequency (fr)mnp for the mnp mode.

(c) dominant mode if L > W > h

(d) resonant frequency of the dominant mode.

y P14.18

x

z

εr

L

h

W

14.19. Repeat Problem 14.18 for the TMy
mnp modes based on the geometry of

Figure P14.19.
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x
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εr

L

h

W

14.20. Derive the array factor of (14-42).

14.21. Assuming the coordinate system for the rectangular microstrip patch is that of
Problem 14.18 (Figure P14.18), derive based on the cavity model the
(a) far-zone electric field radiated by one of the radiating slots of the patch
(b) array factor for the two radiating slots of the patch
(c) far-zone total electric field radiated by both of the radiating slots

14.22. Repeat Problem 14.21 for the rectangular patch geometry of Problem 14.19
(Figure P14.19).

14.23. Determine the directivity (in dB) of the rectangular microstrip patch of
Example 14.3 using
(a) Kraus’ approximate formula
(b) Tai & Pereira’s approximate formula

14.24. Derive the directivity (in dB) of the rectangular microstrip patch of Prob-
lem 14.7.

14.25. Derive the directivity (in dB) of the rectangular microstrip patch of Prob-
lem 14.8.

14.26. For a circular microstrip patch antenna operating in the dominant TMZ
110

mode, derive the far-zone electric fields radiated by the patch based on the
cavity model.

14.27. Using the cavity model, derive the TMZ
mnp resonant frequencies for a micro-

strip patch whose shape is that of a half of a circular patch (semicircle).

14.28. Repeat Problem 14.27 for a 90◦ circular disc (angular sector of 90◦) microstrip
patch.

14.29. Repeat Problem 14.27 for the circular sector microstrip patch antenna whose
geometry is shown in Figure P14.29.
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14.30. Repeat Problem 14.27 for the annular microstrip patch antenna whose geom-
etry is shown in Figure P14.30.
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14.31. Repeat Problem 14.27 for the annular sector microstrip patch antenna whose
geometry is shown in Figure P14.31.

y

z

z

y

x

x

b

h

σ = ∞

a

Side view

Top view

Feed

s, sµε

b
a

φ   0

fφρf

14.32. Repeat the design of Problem 14.7 for a circular microstrip patch antenna oper-
ating in the dominant TMZ

110 mode. Use σ = 107 S/m and tan δ = 0.0018.

14.33. Repeat the design of Problem 14.8 for a circular microstrip patch antenna oper-
ating in the dominant TMZ

110 mode. Use σ = 107 S/m and tan δ = 0.0018.

14.34. For ground-based cellular telephony, the desired pattern coverage is omnidi-
rectional and similar to that of a monopole (with a null toward zenith, θ = 0o).
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This can be accomplished using a circular microstrip patch antenna operating
in a higher order mode, such as the TMZ

210. Assuming the desired resonant
frequency is 900 MHz, design a circular microstrip patch antenna operating
in the TMZ

210 mode. Assuming a substrate with a dielectric constant of 10.2
and a height of 0.127 cm:
(a) Derive an expression for the resonant frequency of the TMZ

210 mode;
(b) Determine the radius of the circular patch (in cm). Neglect fringing.

14.35. For ground-based cellular telephony, the desired pattern coverage is omnidi-
rectional and similar to that of a monopole (with a null toward zenith). This
can be accomplished using circular microstrip patch antennas operating in
higher order modes, such as the TMZ

210,TMZ
310,TMZ

410, etc. Assuming that
the desired resonant frequency is 900 MHz, design a circular microstrip patch
antenna operating in the TMZ

210 mode. Assuming a substrate with a dielectric
constant of 10.2 and a height of 0.127 cm:
(a) Derive an expression for the resonant frequency.
(b) Determine the radius of the circular patch. Neglect fringing.
(c) Derive expressions for the far-zone radiated fields.
(d) Plot the normalized E- and H -plane amplitude patterns (in dB).
(e) Plot the normalized azimuthal (x-y plane) amplitude pattern (in dB).
(f) Determine the directivity (in dB) using the DIRECTIVITY computer pro-

gram of Chapter 2.

14.36. Repeat Problem 14.35 for the TMZ
310 mode.

14.37. Repeat Problem 14.35 for the TMZ
410 mode.

14.38. The diameter of a typical probe feed for a microstrip patch antenna is d =
0.1 cm. At f = 10 GHz, determine the feed reactance assuming a substrate
with a dielectric constant of 2.2 and height of 0.1575 cm.

14.39. Determine the impedance of a single-section quarter-wavelength impedance
transformer to match a 100-ohm patch element to a 50-ohm microstrip line.
Determine the dimensions of the line assuming a substrate with a dielectric
constant of 2.2 and a height of 0.1575 cm.

14.40. Repeat the design of Problem 14.39 using a two-section binomial transformer.
Determine the dimensions of each section of the transformer.

14.41. Repeat the design of Problem 14.39 using a two-section Tschebyscheff trans-
former. Determine the dimensions of each section of the transformer.
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